当前位置:网站首页 >> 作文 >> 三角形的面积教学设计一等奖 北师大版三角形的面积教学设计

三角形的面积教学设计一等奖 北师大版三角形的面积教学设计

格式:DOC 上传日期:2024-08-06 14:56:58
三角形的面积教学设计一等奖 北师大版三角形的面积教学设计
时间:2024-08-06 14:56:58     小编:HLL

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

三角形的面积教学设计一等奖一

[教学内容]

《义务教育教科书(五·四学制)·数学(四年级下册)》22~23页。

[教学内容]

1、掌握三角形的面积计算公式,并能正确计算三角形的面积。

2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

[教学重点]

探究三角形面积的计算方法。

[教学难点]

把三角形转化成平行四边形,探究平行四边形与三角形之间的关系,推导三角形面积的计算公式。

[教学准备]

三角形卡片、多媒体课件。

[教学过程]

一、创设情境,提供素材

师:同学们,这节课,让我们一起走进生产车间,看看工人制作标志牌的场景。

课件出示图片。(见图1)

师:你想提出什么数学问题?

预设:制作这个标志牌需要多少平方分米的铝皮?

师:标志牌是一个什么图形?

预设:三角形。

师:那么求这块标志牌的面积也就是求什么的面积?

预设:求三角形的面积。

师:今天我们就来研究三角形的面积。

教师适时板书:三角形的面积。

【设计意图】

从学生容易感兴趣的情境问题入手,激发学生的好奇心、求知欲,使学生积极投入到探索性的数学活动中。

二、积极思考,引导猜想

师:三角形的面积是什么?谁来猜猜看?

预设1:底乘高。

预设2:三边相乘。

师:那你们想怎么来研究它?

预设:把它转化成以前学过的图形。

师:你怎么想到用转化?

预设1:因为三角形没学过,转化成以前学过的图形就能研究了。

预设2:我们上节课学习平行四边形的时候用的就是转化的思想。

师:转化后再怎么研究?

预设1:看转化后的图形和原来三角形之间的关系。

预设2:根据关系推导出三角形面积计算公式。

预设3:我们研究平行四边形的时候就是这样研究的。

师:你们真是很有想法!想到用研究平行四边形面积的方法来研究三角形的面积。老师帮你们把你们提出的这个研究思路梳理一下。

【设计意图】

学生经过大胆地猜测,好奇心被激发起来,自觉运用知识进行迁移,由于之前刚刚学完平行四边形的面积,学生充分经历的推导过程,学生自然会想到“转化”的数学思想方法。

三、操作验证,总结公式

师:在学习材料包里有好多三角形,下面我们来同桌合作,根据这个思路来研究研究看,开始吧。

学生活动,教师搜集不同素材。

师:哪个小组愿意先上来汇报一下你们的研究成果?

小组为单位上台汇报锐角、直角、钝角三角形的研究成果。

师:老师发现,你们的想法不谋而合,都是把三角形转化成了平行四边形。在操作的.时候,我们可以将两个完全一样的三角形重合,其中一个绕顶点旋转180度后平移,就能得到平行四边形。

课件适时展示旋转过程。

师:那是不是所有的三角形都有这样一个关系呢?

预设:按角分,三角形可以分成这三类,经过研究我们发现这三类三角形都是与它等底等高的平行四边形面积的一半。这三类三角形都符合,我们就不需要再验证了。

师:那我们可以得到结论了吗?

学生回答,教师适时板书:三角形的面积=底×高&spanide;2

师:如果三角形的面积用S表示,底用a表示,高用h表示,怎么用字母来表示?

学生回答,教师适时板书:S=ah&spanide;2

师:对于三角形的面积公式,你有什么要问的吗?

预设:为什么要除以2?

师:哪位同学能帮着回答一下?

预设:我们是用两个完全一样的三角形拼成的平行四边形,那么一个三角形的面积就要用平行四边形的面积除以2。

【设计意图】

通过学生大胆猜测,选择图形—动手操作—观察、交流、讨论—汇报得出公式的系列过程,可以使学生很自然地产生,一步步向前探索的需要。学生既理解公式的来龙去脉,又实实在在经历探究与发现的全过程,既让学生掌握探索问题的一般方法,又使学生感受到数学方法的内在魅力。

四、应用公式,解决问题

1、回归情境,解决问题。

师:现在你能解决这个问题了吗?

学生运用公式进行解答。

2、求下面的几个三角形的面积。

3、填空。

(1)平行四边形的面积是20平方米,与它等底等高的三角形的面积是(    )平方米。

(2)一个三角形花坛底长10米,高是底的一半,花坛的面积是(   )平方米。

4、判断改错。

师:小马虎同学写了一篇数学日记,咱们来看看他写的怎么样?

课件出示:今天,我学习了新的知识:三角形的面积。我知道了三角形的面积是S=ah&spanide;2,我认为两个三角形一定可以拼成一个平行四边形。这是一种转化的数学思想。我还知道了三角形的面积是平行四边形的面积的一半。瞧!我学习得怎么样!

学生发现错误。

5、数学史介绍。

课件出示2000年前《九章算术》里面三角形面积的研究方法。

师:如果只有一个三角形,你还能想办法研究出三角形的面积公式吗?有兴趣的同学我们课下来研究研究。

【设计意图】

练习设计层次清晰,既有基础练习,又有拓展练习。特别增加了数学史的内容,可以开拓学生的视野,也给学有余力的学生留下了继续探索的空间。

三角形的面积教学设计一等奖二

教学内容:

苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题

教学目标:

1、 理解和掌握三角形的面积计算公式。

2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重、难点:

理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。

教具学具准备:

1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。

2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。

一、导入课题:

1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?

[可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]

2、解决方案:

师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?

(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)

师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。

[评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]

二、新授

(一) 实验一:剪

1、师:下面让我们做几个实验,好不好?

(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)

2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)

(2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?

(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)

师:重合了,在数学上叫“完全一样”(板书:两个完全一样)

师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)

学生演示重合过程,课件演示剪、重合的过程。

师:谁能说一说根据刚才的实验,你想到了什么?

小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。

(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)

师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。

说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)

[评析:学生自主探索,动手实践。通过剪一剪、比一比、议一议,使学生多种感官积极参加学习活动,理解“一个平行四边形可以剪成两个完全一样的三角形,其中一个三角形的面积等于这个平行四边形面积的一半。”为学习三角形的面积指明了思维的方向。]

三角形的面积教学设计一等奖三

学习内容:

第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。

学习目标:

1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

学习重点:

理解并掌握三角形面积的计算公式

学习难点:

理解三角形面积公式的推导过程

学习过程:

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、出示一个底是4分米,高是3分米的平行四边形。

这是一个什么图形?它的面积如何计算?

■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。

二.交流共享

■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。

【板块一】学习例4:

仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?

先自己想,随后在小组中交流。

你是怎样求出每个涂色的三角形的面积?

三角形与平行四边形究竟有怎样的关系?

三角形的面积应当如何计算?

【板块二】学习例5:

(1)出示例5:

用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个三角形有什么特点?

(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

小组交流:如何计算一个三角形的面积?

从表中可以看出三角形与拼成的平行四边形还有怎样的关系?

得出以下结论:

这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=

(4)用字母表示三角形面积公式:

三、反馈完善

1、完成试一试:

2、完成练一练:

(1)先回忆拼得过程,再回答。(2)你是如何想的。

3.判断。

(1)两个形状一样的三角形,可以拼成一个平行四边形.……

(2)平行四边形面积一定比三角形面积大.……

(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………

(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….

4.完成课本第17页第6题。

5、拓展练习

量出你的三角板(两个任选一个)的底和高,然后算出它的面积。

6、课外延伸:阅读第16页“你知道吗”

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

三角形的面积教学设计一等奖四

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4&spanide;2 6×(4&spanide;2)

=12(平方厘米) =12(平方厘米)

6×4&spanide;2 6&spanide;2×4

=12(平方厘米) =12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高&spanide;2”。(板书:三角形面积=底×高&spanide;2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah&spanide;2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□&spanide;2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4&spanide;2 b.15×4&spanide;2

c.15×9&spanide;2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5&spanide;2

b.5.2×4.1&spanide;2

c.4.1×3.5 d.4.1×3.5&spanide;2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20&spanide;2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

3

教材分析:

三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。

设计思路:

本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。

采取小组学习的教学形式,为学生营造一种宽松、自由的探索氛围。

教学准备:

1、 每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的任意三角形3个;

2、 量具一张,铅笔一支,剪刀一把;

3、 视频展示台、电脑、实物投影仪。

教学过程:

一、揭示课题

师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?

我们是怎样发现这一计算公式的?

①学生回忆公式推导过程。

②电脑动画演示。

小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的计算。

揭示课题——三角形面积的计算

二、探究新知

1、学生操作

每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。

a、 学生动手操作;

b、老师巡视。

学生把自己的发现用教具贴在黑板上。

2、汇报、交流

师:观察这些图形,你发现了什么?

a、 学生在小组内互相说。

b、指名说。

3、推导公式

师:根据你们的发现,你能推导出三角形面积的计算公式吗?

学生小组讨论,说说自己是怎样推导的。

教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。

4、小结

刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。

说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?

板书:三角形的面积=底×高&spanide;2

=a h&spanide;2

附板书设计:(略)

《三角形面积的计算》教学设计5

教学目标

及重点难点

使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

教学准备(含资料辑录或图表绘制)

板书设计

教后记

教和学的过程

内容教师活动学生活动

一、练习

二、总结一、第5题

可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

二、第6题

要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

三、第9题

测量红领巾高时,可以启发学生把红领巾对折后再测量。

四、第10题

要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

五、思考题

每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

【三角形的面积教学设计一等奖 北师大版三角形的面积教学设计】相关推荐文章:

三角形的边教案-数学三角形边的关系教案

圆的面积优秀教学设计意图5篇

圆的面积教学设计百度文库4篇

找春天教学设计一等奖5篇

平行四边形面积教案设计5篇

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服