当前位置:网站首页 >> 作文 >> 三角形面积教学后记 三角形面积的课后反思(6篇)

三角形面积教学后记 三角形面积的课后反思(6篇)

格式:DOC 上传日期:2023-03-28 12:44:11
三角形面积教学后记 三角形面积的课后反思(6篇)
时间:2023-03-28 12:44:11     小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

三角形面积教学反思三角形面积课后反思篇一

1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

2、通过操作使学生进一步学习用转化的思想方法解决新问题。

3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

教法与学法:教法:演示讲解、指导实践。

学法:小组合作、动手操作。

教学准备:三角形卡片、多媒体课件

教学过程:

一、情境引入

师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

二、探究新知

师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。

2、第一次操作实践

师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

3、交流反馈

师:同学们都拼好了,谁来说说你是怎样拼的?

师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?

生:要用完全相同的三角形来拼。

生:把两个三角形重合就知道了。

师:对,要用两个完全相同的三角形来拼。

师:还有不同的拼法吗?

生:我用两个完全相同的锐角三角形拼成了一个平行四边形。

生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。

(学生汇报并且交流拼法,明确用两个完全一样的三角形能拼成一个平行四边形。)

师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。

4、第二次操作实践

师:说的真好,刚才同学们把两个形状完全一样的三角形通过拼组,转化成了平行四边形,也就把三角形面积的计算和我们刚学过的平行四过形面积计算联系起来了,下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)

放手让学生自己通过前面的拼摆操作,探索三角形与拼成的长方形,平行四边形或正方形之间的内在联系,能够使学生更好地理解三角形面积公式的推导过程。

师:谁来说说你是怎样推导的?

生汇报

师板书:三角形的面积=底×高÷2

师:我们把这种相等的关系叫等底等高。

师:为什么除以2呢?

生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。

师板书s=ah÷2(生齐读)

三、运用公式,解决问题

(1)师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米)

师:(出示课件)它的高是33厘米,你能计算出它的面积吗?

在练习本上算一算

〔设计意图〕在解决实际问题中巩固新知,培养学生学数学、用数学的思想,感受数学的价值。

(2)我们经常见到类似的标志的标志牌(课件出示),你知道这个标志牌的面积吗?谁口算一下。

3×4÷2=6(平方分米)

2.5×4.8÷2=6(平方分米)

师:都是这样做的吗?为什么不用2.5分米?

如果这条底边是4.8分米(课件出示)还可以怎样列式。(2.5×4.8÷2)

师:通过这道题的解答,你明白了什么?

〔设计意图〕通过解决实际生活,提升学生思考能力,培养学生认真观察的能力。

(3)你认识下面的这些道路交通警示标志吗?

向右急转弯 注意危险 减速慢行 注意行人

师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(课件)

学生试算

〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。

(4)小精灵也给大家带来了问题,请大家看屏幕

学生打开书87页,在书中画一画

生:无数个

师:通过画这样的三角形,你发现了什么?

让学生通过思考、讨论、揭示“等底等高的三角形,它们的面积相等”这一规律。

四、总结收获

这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式(课件演示)课下同学们可以动手试一试。

师:同学们,这节课你最大的收获是什么?

师:下节课我们继续运用转化的思想探究梯形面积的计算方法。

通过反思和总结,能使学生建构的知识框架更加清晰、明了,使学生不仅掌握了知识,而且也掌握了学习方法。

三角形面积教学反思三角形面积课后反思篇二

《三角形的面积》是人教版五年级上册第六单元《多边形面积》中的内容,《三角形的面积》教学反思 和谐小学 吴凤琴。本节内容的教学目标可以定位两个:1.通过拼一拼,探索并掌握三角形的面积计算公式,会计算三角形的面积。2.能用公式解决简单的实际问题。这两个目标也是本节课的重难点。

一、本节课的成功之处:

1、由于预习较充分,学生都能用转化思想讲出三角形面积公式的探索过程,虽然语言不是那么简练,这说明学生确实经过了思考,交流。

2、这也是我没有预料到的,学生的自信,敢于质疑。在在分层训练中,李嘉瑶写出并讲述了分层训练(二)中第1小题的思考过程后,本人认为她讲的非常精彩,可是当她讲完后随即就有同学质疑,周万里说她写的语言不够准确,应该是拼成的平行四边形,少写了拼成一次,宫浩真说应该用他的那种解法最好,于是我就对比了两种解法,让同学们评判,从中选出了最优解法。

本节课的不足之处:

1、教师本人的总结语言欠精炼。在学生探索出三角形面积公式后,表述拼成的平行四边形和原来三角形的关系时,应该总结出它们是等底等高,所以三角形的面积是底×高÷2,我总结的比较啰嗦。所以在教学中还要继续提炼语言的准确、精炼程度。

2、小组交流不太充分。在探索面积公式时学生进行了交流,在分层训练时,没有让学生在互讲思考过程。这一点在今后教学中还要特别注意,不能只重展示轻交流。

三角形面积教学反思三角形面积课后反思篇三

《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。因此我认为教学重点应该是引导学生学会学习(比如渗透转化的思想和方法)。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。

为了达到这个目标,我设计了三个学生的学习活动。

在教学中,我让学生动手操作,但是并没有直接让孩子用两个完全一样的三角形去拼,而是给了它们一个装有不同的三角形的学具袋,让其选择材料尝试转化,目的是看学生能否想到不同的转化方法,去体验和感知三角形面积公式的推导过程,调动学生思维活动,让学生真正成为学习的主体。同时在操作中向学生渗透旋转、平移的方法。

转化成学过的会求面积的图形,这只是学习的第一步,发现转化后的图形与原三角形的关系,才能使三角形面积公式的出现水到渠成自然而然。所以,在这个环节,我给了他们充足的独立思考时间和小组交流的时间。

如果学生能在第二个学习活动中把功课做足的话,自己总结写出三角形面积公式是不成问题的,但是不是有没有理解透的,所以我又追问三个问题:“为什么除以2”“除以2之前算的是什么?”“对于这个公式还有疑问吗?”包括让孩子回头想并口述整个推导过程,都是为了让学生加深理解。

教学反思:

反思整个环节,我感觉虽然学生动手操作了,但多多少少还是有点牵着学生鼻子走的意思,没有更多的猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。缺失了学生主动寻找材料的过程,影响了学生解决问题策略意识的培养和对知识的建构。

基于以上思考,我想再教学这一内容时,能不能引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。

三角形面积教学反思三角形面积课后反思篇四

针对以上问题,本次教学中我进行了一定的改进,力求充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。

创设情景,让学生计算做红领巾所需的布料,为难之际,唤起了学生的求知欲,引发学生的学习兴趣,这不仅符合学生的认知需要,发展了个性,而且让学生怀着由好奇所引起的理智上的震动进入认知活动方面的探索。

猜测是数学理论的“胚胎”,猜测是学生感知事物作初步的未经证实的判断,它是学生获取知识过程中的重要环节。三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中鼓励学生大胆猜测:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。

在经历用“两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式”后,我又抛出一个挑战性的问题:你能否就用一个三角形转化成已经学过的图形,从而推导出三角形的面积计算公式呢?这时,课堂出现了少有的安静,教室里只听见折纸、剪纸的沙沙声,同学们都在专心致志地研究。我下去一看,大部分学生都象推导平行四边形面积公式一样,沿高把一边剪下来,再移到另一边去,可无论如何也拼不成已学过的图形;还有的,把三角形在手里翻来覆去,苦思不得其解。

/

长×宽×2

↓ ↓

底÷2×(高÷2)×2

=底×高×2

由于时间关系,我没能让学生作进一步的探究,只能把这一任务留给学生课后再研究,我期待学生获得更多的“精彩”。

三角形面积教学反思三角形面积课后反思篇五

昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。

今天,尝试了预习后的数学课的上法。

“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。

我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。

孩子们愣了一下,马上有几个学生举手。

我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。

“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。

“谁听明白了?”我又追问。

二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)

有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。

“老师,不拼可以吗?”

“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。

我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)

练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。

明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)

三角形面积教学反思三角形面积课后反思篇六

教学一开始,先复习了平行四边形的面积公式及计算,并让学生说说平行四边形面积公式的推导过程。然后教师拿出两个大小不一样的三角形,问:这两个三角形哪个面积大?学生显然能直接看出哪个三角形的面积大,接着教师跳跃性地提出问题:“大多少?”激起学生探究的欲望,让学生主动提出必须先算出三角形的面积,自然而然地引入课题:三角形面积的计算。

新课程标准中要求学生尽可能多的参与知识形成的过程。因此,教学中不能只通过简单的试验观察就说明每种图形的计算方法,教师要善于创设研究问题的情境,充分利用和创造条件,引导学生在参与研究知识的形成过程中,自己想问题、寻方法、得结论。三角形面积公式的推导,是适合学生探究的学习材料,因此,本堂课我设计了两个实验来探索三角形面积的计算方法。实验一:让学生把长方形和平行四边形剪成两个完全一样的三角形,思考并分析三角形面积与原来图形面积的关系,学生发现一个三角形的面积是原来长方形或平行四边形面积的一半。实验二:要求学生动手做实验,在每个方格表示1平方厘米的方格纸上剪出两个完全一样的三角形,用这两个三角形拼拼试试,让学生动手操作时,一方面启发学生把三角形转化为已经会计算面积的图形,另一方面引导学生主动探索三角形与所拼成的平行四边形之间有什么样的联系,并通过填表、观察,发现规律,找出面积的计算方法,这样学生在理解的基础上掌握面积的计算公式,创造思维也得到了很好的发展。

在学生动手操作把两个完全一样的锐角三角形拼成一个平行四边形时,先让学生自己说说是怎样拼的,然后用计算机动态演示拼的过程,“重合、旋转、平移”,使学生直观地感知平移和旋转的含义及其对图形的位置变化的影响,充分调动了学生的学习兴趣,发展了学生的空间观念。在练习设计中,让学生观察、比较两个三角形的面积是否相等,然后把其中一个三角形的顶点在平行线上移动,使学生清楚地看出,等底等高的三角形形状不同,但是面积都相等,运用了多媒体技术能有效地化静态为动态,化抽象为具体,化难为易。

总之,在课堂教学中,教师要真正地把创造还给学生,使课堂焕发生命力,才能让教育成为充满智慧的事业,才能有效地使学生学会学习,学会发展,学生创造。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服