当前位置:网站首页 >> 作文 >> 最新初二数学知识点总结华师版 初二数学知识点总结(模板15篇)

最新初二数学知识点总结华师版 初二数学知识点总结(模板15篇)

格式:DOC 上传日期:2023-12-05 02:37:08
最新初二数学知识点总结华师版 初二数学知识点总结(模板15篇)
时间:2023-12-05 02:37:08     小编:雁落霞

总结是对前段社会实践活动进行全面回顾、检查的文种,这决定了总结有很强的客观性特征。那么我们该如何写一篇较为完美的总结呢?下面是我给大家整理的总结范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

初二数学知识点总结华师版篇一

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

5.无限不循环小数又叫无理数.

6.有理数和无理数统称实数.

7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.

1.平方与开平方互为逆运算.

2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.

3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.

4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.

5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

1.被开方数一定是非负数.

2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。

初二数学知识点总结华师版篇二

3角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。

4推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。

5边边边公理(sss)有三边对应相等的两个三角形全等。

6斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。

7定理1在角的平分线上的点到这个角的两边的距离相等。

8定理2到一个角的两边的距离相同的点,在这个角的平分线上。

9角的平分线是到角的两边距离相等的所有点的集合。

10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。

21推论1等腰三角形顶角的平分线平分底边并且垂直于底边。

22等腰三角形的`顶角平分线、底边上的中线和底边上的高互相重合。

23推论3等边三角形的各角都相等,并且每一个角都等于60°。

24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

25推论1三个角都相等的三角形是等边三角形。

26推论2有一个角等于60°的等腰三角形是等边三角形。

27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

28直角三角形斜边上的中线等于斜边上的一半。

29定理线段垂直平分线上的点和这条线段两个端点的距离相等。

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

初二数学知识点总结华师版篇三

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

5.无限不循环小数又叫无理数.

6.有理数和无理数统称实数.

7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.

1.平方与开平方互为逆运算.

2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.

3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.

4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.

5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

1.被开方数一定是非负数.

2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

初二数学知识点总结华师版篇四

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的.方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

初二数学知识点总结华师版篇五

为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6.勇于“辩”的习惯。

讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

初二数学知识点总结华师版篇六

菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。那么接下来的菱形知识请同学认真记忆了。

1.一组邻边相等的平行四边形是菱形(rhombus)。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

s菱形=1/2×ab(a、b为两条对角线)

上面内容是初中数学知识点大全之菱形,大家对菱形的判定定理了解了吧,接下来还有更多的数学知识点营养大餐等着同学们来汲取吸收呢。

初二数学知识点总结华师版篇七

3、角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。

4、推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。

5、边边边公理(sss)有三边对应相等的两个三角形全等。

6、斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。

7、定理1在角的平分线上的点到这个角的两边的距离相等。

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。

9、角的平分线是到角的两边距离相等的所有点的集合。

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边。

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

13、推论3等边三角形的各角都相等,并且每一个角都等于60°。

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

15、推论1三个角都相等的三角形是等边三角形。

16、推论2有一个角等于60°的等腰三角形是等边三角形。

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

18、直角三角形斜边上的中线等于斜边上的一半。

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等。

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

22、定理1关于某条直线对称的两个图形是全等形。

23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

初二数学知识点总结华师版篇八

把组成总体的每一个考察对象叫做个体;。

从总体中取出的一部分个体叫做这个总体的一个样本.

※2、为一特定目的而对所有考察对象作的全面调查叫做普查;。

为一特定目的而对部分考察对象作的调查叫做抽样调查.

※1、抽样调查的特点:调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

而估计值是否接近实际情况还取决于样本选得是否有代表性.

※1、一般地,能明确指出概念含义或特征的句子,称为定义.

定义必须是严密的.一般避免使用含糊不清的术语,例如"一些"、"大概"、"差不多"等不能在定义中出现.

※2、可以判断它是正确的或是错误的句子叫做命题.

正确的命题称为真命题,错误的命题称为假命题.

※3、数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

※4、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

5、根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.

※1、平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理)。

※2、平行判定定理:同旁内互补,两直线平行.

※3、平行判定定理:同错角相等,两直线平行.

※1.两条直线平行的性质公理:两直线平行,同位角相等;。

※2.两条直线平行的性质定理:两直线平行,内错角相等;。

※3.两条直线平行的性质定理:两直线平行,同旁内角互补.

※1.三角形内角和定理:三角形三个内角的和等于180°。

2.一个三角形中至多只有一个直角。

3.一个三角形中至多只有一个钝角。

4.一个三角形中至少有两个锐角。

※1.三角形内角和定理的两个推论:。

推论1:三角形的一个外角等于和它不相邻的两个内角的和;。

推论2:三角形的一个外角大于任何一个和它不相邻的内角.

初二数学知识点总结华师版篇九

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。以下是小编为大家收集的初二数学实数的知识点总结,供大家参考,希望对大家有所帮助!

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

5.无限不循环小数又叫无理数.

6.有理数和无理数统称实数.

7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.

1.平方与开平方互为逆运算.

2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.

3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.

4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.

5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

1.被开方数一定是非负数.

2.0,1的.算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

初二数学知识点总结华师版篇十

为什么要预习,你要知道这一讲哪些内容你一开始看不懂,那上课的时候对于这个问题就要认真听,这样听讲更有针对性,比坐在教室里纯被动的听讲效率高太多,自然,最终的效果也要好太多。

2、课后刷题,总结归纳。

提高数学成绩必须要刷题,在刷题量没有达到一定程度之前,是没有谈方法和技巧的必要的。怎么刷题?其实每天的家庭作业就是刷题,一定要认真完成,如果还有多的时间,那么可以刷往年的真题试卷,注意!一定是刷真题,刷真题不是说整套整套刷,你就刷平时经常扣分的那几题。等你把刷过的题都归纳清楚,你的水平肯定会得到大幅度提升。

3、不懂就问,消除盲区。

不少同学会发现一个问题,就是听讲也听懂了,做题也不少,但是遇到新题还是不会。遇到新题不会的根本原因还是因为对原有知识点的理解不够深入,不能举一反三,那怎么办,遇到不懂的问题要第一时间解决,可以问老师、问同学、问搜题软件等等,核心宗旨就是不能留下知识盲区,一点疑惑都不能留,并且要第一时间解决,不能拖,一拖就忘了。

初二数学知识点总结华师版篇十一

3推论3等边三角形的各角都相等,并且每一个角都等于60°。

4等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

5推论1三个角都相等的三角形是等边三角形。

6推论2有一个角等于60°的等腰三角形是等边三角形。

7在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

8直角三角形斜边上的中线等于斜边上的一半。

9定理线段垂直平分线上的点和这条线段两个端点的距离相等。

10逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

初二数学知识点总结华师版篇十二

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13、解一元一次方程:

1.解一元一次方程的一般步骤。

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14、一元一次方程的应用。

1.一元一次方程解应用题的类型。

(1)探索规律型问题;。

(2)数字问题;。

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);。

(5)行程问题(路程=速度×时间);。

(6)等值变换问题;。

(7)和,差,倍,分问题;。

(8)分配问题;。

(9)比赛积分问题;。

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路:

首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤。

(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

(3)列:根据等量关系列出方程.

(4)解:解方程,求得未知数的值.

(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

学好初一数学的六大方法技巧。

1、做好预习:

单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

2、认真听课:

听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

3、认真解题:

课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

4、及时纠错:

课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5、学会总结:

冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

6、学会管理:

管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

初二数学知识点总结华师版篇十三

分式的基本性质:

分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

注意:(1)“c是一个不等于0的整式”是分式基本性质的一个制约条件;

(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

初二数学知识点总结华师版篇十四

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法。

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法。

用图像表示函数关系的方法叫做图像法。

初二数学知识点总结华师版篇十五

2一次函数和正比例函数,包括他们的表达式、增减性、图像。

3从函数的观点看方程、方程组和不等式。

条形图特点:

(1)能够显示出每组中的具体数据;

(2)易于比较数据间的差别。

扇形图的特点:

(1)用扇形的面积来表示部分在总体中所占的百分比;

(2)易于显示每组数据相对与总数的大小。

折线图的特点;

易于显示数据的变化趋势。

直方图的特点:

(1)能够显示各组频数分布的情况;

(2)易于显示各组之间频数的差别。

2会用各种统计图表示出一些实际的问题。

1全等三角形的性质:

全等三角形的对应边、对应角相等。

2全等三角形的判定。

边边边、边角边、角边角、角角边、直角三角形的hl定理。

3角平分线的性质。

角平分线上的点到角的两边的距离相等;

到角的两边距离相等的点在角的平分线上。

1轴对称图形和关于直线对称的两个图形。

2轴对称的性质。

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上。

3用坐标表示轴对称。

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y)。

4等腰三角形。

等腰三角形的两个底角相等;(等边对等角)。

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)。

一个三角形的两个相等的角所对的边也相等。(等角对等边)。

5等边三角形的性质和判定。

等边三角形的三个内角都相等,都等于60度;

三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

在三角形中,大角对大边,大边对大角。

1整式定义、同类项及其合并。

2整式的加减。

3整式的乘法。

(1)同底数幂的乘法:

(2)幂的乘方。

(3)积的乘方。

(4)整式的乘法。

4乘法公式。

(1)平方差公式。

(2)完全平方公式。

5整式的`除法。

(1)同底数幂的除法。

(2)整式的除法。

6因式分解。

(1)提共因式法。

(2)公式法。

(3)十字相乘法。

1分式及其基本性质。

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2分式的运算。

(1)分式的乘除。

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减。

加减法法则:同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减。

3整数指数幂的加减乘除法。

4分式方程及其解法。

1反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)。

性质:两支的增减性相同;

2反比例函数在实际问题中的应用。

1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

1平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形。

(1)矩形。

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质。

判定:有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形。

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质。

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形。

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

加权平均数、中位数、众数、极差、方差。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服