当前位置:网站首页 >> 作文 >> 最新八年级数学教案湘教版(通用8篇)

最新八年级数学教案湘教版(通用8篇)

格式:DOC 上传日期:2023-11-19 14:31:03
最新八年级数学教案湘教版(通用8篇)
时间:2023-11-19 14:31:03     小编:文锋

作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

八年级数学教案湘教版篇一

人数1124225。

每人创得利润2052.521.51.51.2。

该公司每人所创年利润的平均数是多少万元?

年龄频数。

28≤x。

30≤x。

32≤x。

34≤x。

36≤x。

38≤x。

40≤x。

3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

答案:1.约2.95万元2.约29岁3.60.54分贝。

八年级数学教案湘教版篇二

教学目标:。

1.在生活实例中认识轴对称图。

2.分析轴对称图形,理解轴对称的概念。

3.了解两个图形成轴对称性的性质,了解轴对称图形的性质。

教学重点1、轴对称图形的概念;2、探索轴对称的性质。

教学难点1、能够识别轴对称图形并找出它的对称轴;。

2、能运用其性质解答简单的几何问题。

教学方法启发诱导法。

教具准备多媒体课件。

教学过程。

一、情境导入。

同学们,自远古以来,对称的形式被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见,对称给我们带来了美的感受!而轴对称是对称中重要的一种,今天让我们一起走进轴对称世界,探索它的秘密吧!

从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,1.认识生活中的轴对称图形,并能找出轴对称图形的对称轴。2.了解两个图形成轴对称,能找出它们的对称轴及对应点。3.弄清轴对称图形,两个图形成轴对称的区别与联系。

八年级数学教案湘教版篇三

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

八年级数学教案湘教版篇四

教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。

学法:自主、合作、探索的学习方式。

在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,体现素质教育的要求。

八年级数学教案湘教版篇五

正比例函数的概念.

2.内容解析。

一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验.

对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征.

本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式.

基于以上分析,确定本节课的教学重点:正比例函数的概念.

二、目标和目标解析。

1.目标。

(1)经历正比例函数概念的形成过程,理解正比例函数的概念;。

(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想.

2.目标解析。

达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念.

达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想.

三、教学问题诊断分析。

正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念.对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度.

因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程.

四、教学过程设计。

1.情境引入,初步感知。

引言。

上一节我们已经学习了关于函数的最基础的知识,知道了变量与函数、函数的图象及函数的三种表示方法,从这节课开始,我们将重点研究一种最基本的具体函数——一次函数,本节课先研究特殊的一次函数——正比例函数.

问题12011年开始运营的京沪高速铁路全长1318km.设列车的平均速度为300km/h.考虑以下问题:

师生活动:教师引导学生分析问题中的数量关系,这是典型的行程问题,数量关系是学生熟悉的“路程=速度×时间”.

设计意图:让学生真切感受数学与实际的联系,即数学理论来源于实际又服务于实际.帮助学生逐步提高将实际问题抽象为函数模型的能力,初步体会函数建模思想.

设计意图:由于自变量t是列车运行时间,作为实际问题,自变量的取值是受限制的,应对其取值范围作出说明.

对问题(2)的分析解答过程让学生回答下列问题:

追问1这个问题中两个变量之间的对应关系是函数关系吗?如果是,试说明理由.

设计意图:让学生感受量与量之间的函数关系,体会函数关系蕴涵在实际问题中,激发学生探究兴趣.对理由的说明学生可能有障碍,此时教师要引导学生回顾函数概念的学习过程,用函数的概念来回答:问题中的两个变量,当其中的变量t变化时,另一个变量y随着t的变化而变化,并且对于变量t的每一个?定的值,另一个变量y都有唯一确定的值与之对应.

追问2请你写出y与t之间的函数解析式,并分析解析式在结构上是什么形式?

追问3对于自变量t和函数y的每一对对应值,y与t的比值,

八年级数学教案湘教版篇六

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)。

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

1、为何值时,为反比例函数?

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂教学:

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

八年级数学教案湘教版篇七

上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

二、展示目标,自主学习:

自学指导:认真阅读课本第3页——4页内容,完成下列任务:

1、请比较与0的大小,你得到的结论是:________________________。

2、完成3页“探究”中的填空,你得到的结论是____________________。

3、看例2是怎样利用性质进行计算的。

4、完成4页“探究”中的填空,你得到的结论是:____________________。

5、看懂例3,有困难可与同伴交流或问老师。

八年级数学教案湘教版篇八

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法。

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观。

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键。

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法。

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程。

一、观察探讨,体验新知。

【问题牵引】。

请同学们计算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;。

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学。

【例1】把下列各式分解因式:(投影显示或板书)。

(1)x2-9y2;(2)16x4-y4;。

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);。

(5)m2(16x-y)+n2(y-16x)。

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服