当前位置:网站首页 >> 作文 >> 八年级数学教案人教版(大全8篇)

八年级数学教案人教版(大全8篇)

格式:DOC 上传日期:2023-09-21 02:02:02
八年级数学教案人教版(大全8篇)
时间:2023-09-21 02:02:02     小编:雁落霞

作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

八年级数学教案人教版篇一

【知识与技能】

1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.

【过程与方法】

经历观察、分析、交流的过程,逐步提高运用知识的能力.

【情感态度】

提高学生的观察、分析能力和对图形的感知水平.

【教学重点】

会求反比例函数的解析式.

【教学难点】

反比例函数图象和性质的运用.

教学过程

一、情景导入,初步认知

【教学说明】复习上节课的内容,同时引入新课.

二、思考探究,获取新知

1.思考:已知反比例函数y=的图象经过点p(2,4)

(1)求k的值,并写出该函数的表达式;

(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;

分析:

(1)题中已知图象经过点p(2,4),即表明把p点坐标代入解析式成立,这样能求出k,解析式也就确定了.

(2)要判断a、b是否在这条函数图象上,就是把a、b的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.

(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.

【归纳结论】这种求解析式的方法叫做待定系数法求解析式.

2.下图是反比例函数y=的图象,根据图象,回答下列问题:

(1)k的取值范围是k0还是k0?说明理由;

(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:

(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k0.

(2)因为点a(-3,y1),b(-2,y2)是该函数图象上的两点且-30,-20.所以点a、b都位于第三象限,又因为-3-2,由反比例函数的图像的性质可知:y1y2.

【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.

八年级数学教案人教版篇二

(1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质。

(2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等。

(3)能利用三角形全等证明一些结论。

(4)探索并证明角平分线的性质定理,能运用角的平分线的性质。

二、教材分析

中学阶段重点研究的两个平面图形间的关系是全等和相似,本章以三角形为例研究全等。对全等三角形研究的问题和研究方法将为后面相似的学习提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础。本章还借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程。由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是后面将学习的等腰三角形、四边形、圆等内容的基础。

全等形在几何中处处可见,为了避免学生将全等的概念局限于全等三角形,本章从现实世界中各种各样的全等图形谈起。接着,教科书从“重合”的角度定义了全等形和全等三角形的概念,这种定义方式有利于学生借助生活经验直观地认识所定义的对象,也便于引出全等形的对应部分。

性质与判定是研究全等三角形的两个重要方面。教科书由全等三角形的定义直接导出全等三角形的性质。在研究全等三角形的判定方法时,由图形的性质与判定在命题陈述上的互逆关系出发,引出由三条边分别相等、三个角分别相等判定两个三角形全等的方法。接下来,教科书构建了一个完整的探索三角形全等条件的活动——首先提出探究的问题:由全等三角形的定义可知,满足三条边分别相等、三个角分别相等的两个三角形全等,那么能否减少条件,简捷地判定两个三角形全等呢?然后从“一个条件”开始,逐渐增加条件的数量,分别探究“一个条件”“两个条件”“三个条件”……能否保证两个三角形全等。对于“三个条件”的情形,分为三条边、两条边和一个角、两个角和一条边以及三个角分别相等的情况依次进行了探究。同时,根据对各判定方法学习要求的差别设置了不同的学习方式,有的让学生通过作图实验,猜想结论,再以基本事实的形式给出判定方法,有的让学生通过举反例说明判定方法不成立,有的则由已获得的判定方法证明新的判定方法。最后,探究了判定直角三角形全等的特殊方法。

由于角的平分线的性质可以用全等三角形的知识证明,本章的最后一节安排了角的平分线的性质的内容。首先,由平分角的仪器的工作原理引出了一个角的平分线的尺规作图,然后探究并证明了角的平分线的性质,同时总结了证明一个几何命题的一般步骤,最后给出了角的平分线的性质定理的逆定理。

本章重点研究了三角形全等的判定方法,并在其中渗透了研究几何图形的基本问题和方法。在推理论证方面,本章既有直接利用三角形全等的判定方法证明两个三角形全等的问题,又有通过证明两个三角形全等推出线段相等或角相等的问题,在问题的设计中还融入了平行线的性质与判定、三角形中边或角的等量关系、距离的概念、折纸情境等内容,推理论证的难度比《三角形》一章提高了。为了降低学生利用全等三角形的知识进行推理论证的难度,本章设置了多道例题做出示范,包括怎样分析条件与结论的关系,怎样书写证明格式,还总结了证明几何命题的一般步骤。

三、教学建议

1.用研究几何图形的基本思想和方法贯穿本章的教学

学生在前面的几何学习中研究了相交线与平行线、三角形等几何图形,对于研究几何图形的基本问题、思路和方法形成了一定的认识,本章在教学中要充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿全章的教学。例如,在教授本章之前,可以先让学生根据研究几何图形的经验,思考全等三角形的主要研究内容是什么。学生明确了性质和判定也是研究全等三角形的两个重要方面,不仅可以对将学习的内容做到心中有数,而且可以帮助他们从数学内部认识研究全等的目的。又如,在教学全等三角形的性质之前,可以提示学生:三角形的性质描述的是三角形的边和角所具有的共同特征,那么全等三角形的性质研究的是什么内容。而在学生学习三角形全等的判定方法之前,可以先让他们回忆图形的判定讨论的是确定某种图形需要的条件,从而明确研究全等三角形的判定就是要确定能保证两个三角形全等的条件:再让他们利用性质和判定在命题陈述上的互逆关系,得到用三条边分别相等、三个角分别相等判定两个三角形全等的方法。再如,活动2中学生独立研究筝形的性质时,要先让他们回顾研究几何图形的基本思路和方法。

2.让学生充分经历探究过程

本章在编排?定三角形全等的内容时构建了一个完整的探究活动,包括探究的目标、探究的思路和分阶段的探究活动。教学中可以让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,按计划逐步探索两个三角形全等的条件。

八年级数学教案人教版篇三

1. 探索并了解正整数幂的运算 性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进 行计算。

2. 探索并了解单项式与单项式、单项式与多项 式、多项式与多项式相乘的法则,会进行简单的整式的乘法运算。

3. 会由整式 的乘法推导乘法公式,并能运用公式进行简单计 算。

4. 理解因式分解的意义及其与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。

5. 会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。

6. 让学生主动参与到一些探索过程中去逐步形成独立思考,主动探索的习惯,提高自己数学学习兴趣。

八年级数学教案人教版篇四

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

单项式与多项式的乘法运算

推测整式乘法的运算法则。

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1、请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:(2a2b3c)(-3ab)

解:原式=[2·(-3)]·(a2·a)·(b3·b)·c

=-6a3b4c

问:如何计算单项式与多项式相乘?例如:2a2·(3a2-5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)·(3ab2–5ab3)

(2)(-4x)·(2x2+3x-1)

(2)原式=(-4x)·2x2+(-4x)·3x+(-4x)·(-1)①

八年级数学教案人教版篇五

1.理解同分母分式与异分母分式加减法的运算法则,体会类比思想.

2.能运用同分母分式和异分母分式加减运算法则进行运算,体会化归思想.

分式的加减法法则.

异分母分式的加减运算.

一师一优课一课一名师(设计者:)

一、创设情景,明确目标

同学们还记得分数是如何进行加减法运算的吗?(找同学叙述)

现在我们看下面两个问题:

请按两个问题的要求列出代数式,请观察两个代数式有何特征,如何对这类代数式进行运算,这就是我们今天所要探究的内容.

二、自主学习,指向目标

1.自学教材第139至140页.

2.学习至此:请完成《学生用书》相应部分.

三、合作探究,达成目标

分式加减法运算法则及应用

活动一:

1.让学生观察课本p140页思考,并让学生叙述分数加减法法则.

2.类似分数加减法运算法则,推广可得分式的加减法法则,你能叙述吗?

展示点评:同分母的分式相加减,分母________,把分子相________.

异分母的分式相加减,先________,变为________分式,再加减.

八年级数学教案人教版篇六

1、探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

2、探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

a的面积

(单位面积)b的面积

(单位面积)c的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形c的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

学生的方法可能有:

方法一:

如图1,将正方形c分割为四个全等的直角三角形和一个小正方形。

方法二:

如图2,在正方形c外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

方法三:

如图3,正方形c中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形c的面积计算是一个难点,为此设计了一个交流环节。

效果:学生通过充分讨论探究,在突破正方形c的面积计算这一难点后得出结论2.

3、议一议

内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用,分别表示直角三角形的两直角边和斜边,那么。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力。

八年级数学教案人教版篇七

第一步:课前引入:

前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

请同学们看下面问题:

no1、一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表所示:

八年级数学教案人教版篇八

1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。

【学习重点】

探索和掌握等腰三角形的性质及其应用。

【学习难点】

等腰三角形的性质的应用。

【学习 过程】

一、你知道吗?

等腰三角形的有关概念

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服