当前位置:网站首页 >> 作文 >> 四年级奥数行程问题6篇(模板)

四年级奥数行程问题6篇(模板)

格式:DOC 上传日期:2024-06-21 09:18:36
四年级奥数行程问题6篇(模板)
时间:2024-06-21 09:18:36     小编:zdfb

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

四年级奥数行程问题篇一

6、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人下山的速度都是各自上山速度的2倍。甲到山顶时,乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。求从山脚到山顶的距离。

四年级奥数行程问题篇二

[解答]:

45人分三组出发,每组15人。

为了尽快到达,三组必须同时到达。

每一组都是步行了一些路程,坐车行了一些路程。

由于同时到达,所以每一组坐车的时间相等,当然步行的时间也相等。

汽车速度是步行速度的15倍,所以如果时间相同,汽车行的路程是人步行路程的15倍。

我们设第二组第一条红色线段的长度为1份。

可得出第一条蓝色线段=8份,当然,第3条,第5条蓝色线段的长度也等于8份。

还可以得到第三组的红色线段=2份,当然,第1组的红色线段也等于2份。

所以全程是8+2=10份,8份路程坐车,2份路程步行。

每份长度为30÷10=3公里。

所以坐车时间为3×8÷60=0.4小时

步行时间为3×2÷4=1.5小时

一共需要0.4+1.5=1.9小时。

四年级奥数行程问题篇三

解答:

因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。

这样设乙丙步行路程为3份,甲步行4份。如下图安排:

这样甲骑车行骑车的3/5,步行2/5.

所以时间为:30*3/5/20+30*2/5/5=3.3小时。

四年级奥数行程问题篇四

数学是一门基础学科,被誉为科学的皇后。对于我们的广大小学生来说,数学水平的高低,直接影响到以后的学习,小学频道特地为大家整理了小学奥数行程问题例题花圃周长,希望对大家有用!

分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)

第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)

第二个相遇:在114分钟里,甲、乙二人一起走完了全程

所以花圃周长为(40+38)×114=8892(米)

四年级奥数行程问题篇五

5.多人行程---这类问题主要涉及的.人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。甲从a地,乙和丙从b出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求a、b两地的距离。

四年级奥数行程问题篇六

奥数一直是小升初阶段的学习的一个重点。而作为奥数七大模块之一的行程问题一直是奥数学习的一个重点和难点。其中的流水问题被称为行程问题中的特殊情况,是值得深究的。

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:

顺水速度=船速+水速 (1)

逆水速度=船速-水速 (2)

这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:

水速=顺水速度-船速 (3)

船速=顺水速度-水速 (4)

由公式(2)可得:

水速=船速-逆水速度 (5)

船速=逆水速度+水速 (6)

这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

船速=(顺水速度+逆水速度)÷2 (7)

水速=(顺水速度-逆水速度)÷2 (8)

一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度)

解:此船的顺水速度是:

25÷5=5(千米/小时)

因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/小时)

综合算式:

25÷5-1=4(千米/小时)

答:此船在静水中每小时行4千米。

一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度)

解:此船在逆水中的速度是:

12÷4=3(千米/小时)

因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:

4-3=1(千米/小时)

答:水流速度是每小时1千米。

一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)

(20+12)÷2=16(千米/小时)

因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:

答略。

某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)

解:此船逆水航行的速度是:

18-2=16(千米/小时)

甲乙两地的路程是:

16×15=240(千米)

此船顺水航行的速度是:

18+2=20(千米/小时)

此船从乙地回到甲地需要的时间是:

240÷20=12(小时)

答略。

某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)

解:此船顺水的速度是:

15+3=18(千米/小时)

甲乙两港之间的路程是:

18×8=144(千米)

此船逆水航行的速度是:

15-3=12(千米/小时)

此船从乙港返回甲港需要的时间是:

144÷12=12(小时)

综合算式:

(15+3)×8÷(15-3)

=144÷12

=12(小时)

答略。

甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度)

解:顺水而行的时间是:

144÷(20+4)=6(小时)

逆水而行的时间是:

144÷(20-4)=9(小时)

答略。

一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6.5小时行驶260千米。求这只船沿岸边返回原地需要多少小时?(适于高年级程度)

解:此船顺流而下的速度是:

260÷6.5=40(千米/小时)

此船在静水中的速度是:

40-8=32(千米/小时)

此船沿岸边逆水而行的速度是:

32-6=26(千米/小时)

此船沿岸边返回原地需要的时间是:

260÷26=10(小时)

综合算式:

260÷(260÷6.5-8-6)

=260÷(40-8-6)

=260÷26

=10(小时)

答略。

一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。顺水行150千米需要多少小时?(适于高年级程度)

解:此船逆水航行的速度是:

120000÷24=5000(米/小时)

此船在静水中航行的速度是:

5000+2500=7500(米/小时)

此船顺水航行的速度是:

7500+2500=10000(米/小时)

顺水航行150千米需要的时间是:

150000÷10000=15(小时)

综合算式:

150000÷(120000÷24+2500×2)

=150000÷(5000+5000)

=150000÷10000

=15(小时)

答略。

一只轮船在208千米长的水路中航行。顺水用8小时,逆水用13小时。求船在静水中的速度及水流的速度。(适于高年级程度)

解:此船顺水航行的速度是:

208÷8=26(千米/小时)

此船逆水航行的速度是:

208÷13=16(千米/小时)

(26+16)÷2=21(千米/小时)

由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:

答略。

a、b两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水行全程用几小时?(适于高年级程度)

解:甲船逆水航行的速度是:

180÷18=10(千米/小时)

甲船顺水航行的速度是:

180÷10=18(千米/小时)

根据水速=(顺水速度-逆水速度)÷2,求出水流速度:

乙船逆水航行的速度是:

180÷15=12(千米/小时)

乙船顺水航行的速度是:

12+4×2=20(千米/小时)

乙船顺水行全程要用的时间是:

180÷20=9(小时)

综合算式:

=180÷[12+8]

=180÷20

=9(小时)

答略。

奥数的学习,需要一个细致的学习过程。宁波奥数网希望相信通过以上流水问题的讲解,大家能够攻破流水问题中的考点。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服