当前位置:网站首页 >> 作文 >> 倍数与因数教学设计(二十篇)

倍数与因数教学设计(二十篇)

格式:DOC 上传日期:2023-03-23 15:33:54
倍数与因数教学设计(二十篇)
时间:2023-03-23 15:33:54     小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

倍数与因数教学设计篇一

1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。

2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。

3、知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

掌握找一个数的因数和倍数的方法。

理解和掌握因数和倍数的概念。

课件

师:我和你们的关系是

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。是啊,人与人之间的关系是相互的。再比如:我们班的曹雪飞与贺正博之间是同桌关系,他们之间的关系是相互依存的,不能单独存在,我们可以说曹雪飞是贺正博的同桌,或者说贺正博是曹雪飞的同桌,而不能说曹雪飞是同桌!在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

(设计意图:先让学生体会关系,再通过同桌关系让学生体会相互依存,不能独立存在,进而为因数与倍数的相互依存关系打下基础。)

(一)1、出示主题图,仔细观察,你得到了哪些数学信息?

学生说:图上有两行飞机,每行六架,一共有12架。(注意培养学生提取数学信息的能力和语言表达能力,即:数学语言要求简练严谨)

教师:你们能够用乘法算式表示出来吗?

学生说出算式,教师板书:2×6=12

2.出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

(注:由乘法算式理解因数和倍数相互依存,不能独立存在。)

3.教师出示图2:师:根据图上的内容,可以写出怎样的算式?

3×4=12

从这道算式中,你知道谁是谁的因数?谁是谁的倍数吗?(让学生自己说一说,进而加深因数倍数关系的认识。)

教师小结:因数和倍数是相互依存的,为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.

4、师:谁来说一道乘法算式考考大家。

(指名生说一说)

5、让其他学生来说一说谁是谁的因数谁是谁的倍数。

(注:可以让几位学生互相说一说。)

6、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。

(设计意图:18÷3=6是为了培养学生思维的逆向性)

(二)找因数:

1、师:我们知道了因数与倍数之间的关系,从上面的研究中,我们还可以知道,一个数的因数还不止一个12的因数有:1,2,3,4,6,12.那么怎样求一个数的因数呢?

出示例1:18的因数有哪几个?

注意:请同学们四人以小组讨论,在找18的因数中如何做到不重复,不遗漏。

学生尝试完成:汇报

(18的因数有:1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

师:18和36的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

请同学们观察一个数的因数有什么特点。

在教师引导下,学生总结出:任何一个数的因数,最小的一定是(),而最大的一定是(),因数的个数是有限的。

(设计意图:培养学生探索、归纳、总结、概括的能力。)

3、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(三)找倍数:

1、我们学会找一个数的因数了,那如何找一个数的倍数呢?2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?

(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、再找3和5的倍数。

3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示:2的倍数,3的倍数,5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?让学生观察2、3、5的倍数,说一说一个数的倍数有什么特点。

学生试着总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

通过今天这节课的学习,你有什么收获?

学生汇报这节课的学习所得。

1、教材16页练习二第5题。学生在小组中讨论交流:这四位同学的说法是否正确?为什么?

2、教材第15页练习二第1题。组织学生独立完成,然后在小组中互相交流检查。

倍数与因数教学设计篇二

教学内容:青岛版教材小学数学五年级上册88—91页。

1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的.数及其个数方面的特征。

2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

教学难点:探索求一个数因数或倍数的方法。

教具准备:多媒体课件、学生练习题

师:同学们看这是什么?

生:小正方形。

师:想不想知道王老师给大家带来了多少个这样的小正方形?

生:想。

师:多少个?

生:12个。

师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

生:能。

【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

生:好!

学生汇报:

生1:1×12=12

师:他是怎么摆的?

生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。

课件出示摆法。

师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

生2:2×6=12

师:猜一猜他是在怎么摆的?

生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。

师:这两种情况,我们也算一种。

生3:3×4=12

师:他又是怎么摆的?

生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。

师:还有其他摆法吗?

生:没有了。

师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

2.教学“因数和倍数”的意义。

师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

学生汇报:任选一道回答。

生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

师:还有一道算式,谁来说一说?

生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)

师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

3、5、18、20、36

【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

1、找一个数的因数。

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

生:有。

师:老师提个要求:

1)、可以独立完成,也可以同桌交流。

2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

2、探索交流找一个数的因数的方法。

找一名有代表性的作业板书在黑板上。

师:他找对了吗?

生:没有,漏下了一对。

师:为什么会漏掉?仅仅是因为粗心吗?

生:不是,他没有按照一定的顺序找!

师:那么要找到36所有的因数关键是什么?

生:有序。

师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗?

生:没有了。

生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

生:再接着找就重复了。

师:那么找到什么时候就不找了?

生:找到重复了,就不在往下找了。

师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

师:有失误的学生对自己的错误进行调整。

3、巩固练习。

找出下面各数的因数。

4、寻找一个数的因数的特点。

【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

1、找一个数的倍数。

师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

生:能!

师:试试看,找个小的可以吗?

生:行!

师:找一下3的倍数。30秒时间,把答案写在练习纸上。??

师:有什么问题吗?

生:老师,写不完。

师:为什么写不完?

生:有很多个!

师:那怎么才能全都表示出来呢?

生:可以加省略号。

师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?

师:谁能总结一下你是怎样找到的?

生:从小到大依次乘自然数。

师:你真会思考!

课件出示3的倍数。

2、找5、7的倍数。

师:我们再来练习找一下5的倍数。

生:5的倍数有:5、10、15、20、25??

生:7的倍数有:7、14、21、28、35??

师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

生:能!

学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

认识“完美数”。

师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

【设计意图】丰富学生的知识,陶冶学生的情操。

找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

倍数与因数教学设计篇三

教学内容:因数与倍数(p12-13例1及p15题1、2)

教学目标:

1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识以及热爱数学学习的情感。

教学重点:理解因数的意义

教学难点:能熟练地找一个数的因数。

教具准备:多媒体课件

教学过程:

一、引入新课:

1、课件出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?

(指名生说一说)

4、你能不能写一个算式来考考同桌?学生写算式。

5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)

齐读教材第12的注意。

二、自学预设:

1、仔细看例一,什么叫因数和倍数?像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

2、怎样找因数?例如18,36的因数是什么?

3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)

尝试练习

试着完成p13的做一做练习

三、认识因数与倍数,展示交流

(一)找因数:

1、出示例1:18的因数有哪几个?

师:从12的因数可以看出:一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成汇报:(18的因数有:1,2,3,6,9,18)

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示

5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二).我的质疑

1.谁能举一个算式例子,并说说谁是谁的因数?

2.讨论:0×30×100÷30÷10

提问:通过刚才的计算,你有什么发现?

3.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

四、反馈检测

1.下面每一组数中,谁是谁得因数?

16和24和2472和820和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4=3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3、完成p15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

五、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

板书设计:因数和倍数

18的因数有:1,2,3,6,9,18

一个数的因数::最小的是1,最大的是它本身。

倍数与因数教学设计篇四

本课教学内容是国家课程标准苏教版小学《数学》四年级下册第70—72页“倍数和因数的认识”。本课虽是传统教学内容,但新教材重建了知识体系,依据学生熟悉的乘法算式中积与乘数的关系引导学生认识倍数和因数,从而大大降低了学习难度。本课教材分两段编排:第一段,认识倍数和因数;第二段,找一个数的倍数或因数的方法。前者是形成概念,后者是应用概念。要求学生通过本课学习,能在1—100的自然数中找出10以内某个数的倍数,找出100以内某个数的所有因数;同时在本课教学中引导学生探索数学知识的过程中,使学生进一步体会数学知识之间的内在联系,提高其数学思考的水平。

流程1:导入新课

流程2:认识倍数和因数

流程3:探索求一个数的倍数的方法

流程4:完成“试一试”,总结一个数倍数的特点

流程5:探索求一个数的因数的方法

流程6:完成“试一试”,总结一个数因数的特点

流程7:完成想想做做第2题

流程8:完成想想做做第3题

流程9:数学游戏

流程10:课堂总结

流程11:教学“你知道吗?”

第一段:导入新课

流程1:导入新课

师:(拿数学课本,手指“数学”)同学们,这是我们的数学书。“数学”包括了许多有关数的学问。你们身边有数吗?我想如果请同学们举例的话,说都说不完,因为我们身边的数实在太多了。数中有很多学问,今天我们就来研究自然数中数与数之间的一种关系。

第二段:认识倍数和因数

流程2:认识倍数和因数

师:请同学们拿出课前准备的12张同样大的正方形纸片,前后四人一组摆一摆。

师:要求用12个同样大小的正方形拼成一个长方形。每排摆几个?摆几排呢?用乘法算式把自己的摆法表示出来,再和小组里的同学交流。(学生活动)。

师:同学们,用12个同样大的正方形可以拼出这样一些长方形,我们一起来看一看。可以拼成一行,或者是拼成一列,用乘法算式12×1=12表示;也可以拼成2行,每行6个;或者拼成2列,每列6个,用乘法算式6×2=12表示;还可以拼成3行,每行4个;或者拼成3列,每列4个,用乘法算式4×3=12表示。

师:同学们,由乘法算式4×3=12,我们可以说12是4的倍数,12也是3的倍数,4和3都是12的因数。今天这节课我们就一起认识:倍数和因数。

师:那根据另外两个乘法算式,同学们会说哪个数是哪个数的倍数,哪个数是哪个数的因数吗?请同桌相互说一说 (学生活动)。

师:12×1=12,12是1的倍数,12也是12的倍数,12和1都是12的因数;6×2=12,12是6的倍数,12也是2的倍数,6和2都是12的因数。

师:同学们是这样说的吗?这里还有几个算式,同桌的两个人继续练习说一说(学生活动)。

师:11×4=44,44是11的倍数,44也是4的倍数,11和4都是44的因数;12×5=60,60是12的倍数,60也是5的倍数,12和5都是60的因数;9×8=72,72是9的倍数,72也是8的倍数,9和8都是72的因数。45是3的倍数,45也是15的倍数,3和15都是45的因数。你都说对了吗?

师:刚才我们都是根据算式说出谁是谁的倍数,谁是谁的因数的。老师这儿还有一首描写冬天景色的诗,一起来看一看。诗有11个数,同学们还能说出谁是谁的倍数,谁是谁的因数吗?(学生活动)

师:(出示)如果有同学这样说: 8是倍数,4是因数,你们认为可以吗?为什么?(学生议论)

师:同学们,倍数、因数指的是两个自然数之间的一种关系,所以我们一定要说清楚谁是谁的倍数,谁是谁的因数,这样的说法是错误的。可以改成这样“8是4的倍数,4是8的因数。”关于倍数和因数,老师还要补充说一点,为了方便,我们在研究时,所说的数一般指不是0的自然数。

第三段:探索求倍数和因数的方法

流程3:探索求一个数的倍数的方法

师:同学们已经知道了什么是倍数,那一个数的倍数是多少,有多少个呢?这是我们接下来研究的问题。你能找出多少个3的倍数?

师:同学们先想一想,什么样的数是3的倍数?怎样才能准确地写出3的倍数?把你的想法和小组里的同学交流一下。(学生活动)

师:同学们一定能想到,3的倍数就是3和除0以外的一个自然数相乘的积。例如3×1=(3),3×2=(6),3×3=(9),括号里的数都是3的倍数。这样我们按从小到大的顺序,用乘法就可以有条理地说出3的倍数了,它们是:3、6、9、12、15、18。能把3的倍数全部说完吗? 说不完,那应该怎样表示问题的答案呢? 因为3 的倍数的个数是无限的,所以写的时候要借助省略号来完整地表示出结果。

流程4:完成“试一试”,总结一个数的倍数的特点

师:下面就请同学们用这种方法分别写出2的倍数和5的倍数。注意要有顺序地思考,并且规范地表示出结果。(学生活动)

师:老师和同学们核对一下答案,如果出错了,一定要分析原因,再订正。(核对答案)

师:现在我们已经找到了求一个数的倍数的方法,并用这样的方法分别求出3、2、5的倍数,请同学们观察上面的例子,你们能发现一个数的倍数有什么特点吗?大胆地说出你们的想法。(学生活动)

师小结:仔细观察,同学们会发现:一个数最小的倍数是它本身,没有最大的倍数;一个数倍数的个数是无限的。

流程5:探索求一个数的因数的方法

师:同学们已经学会了找一个数的倍数,那怎样找一个数的.因数呢?同学们愿意独立思考,尝试解决吗?面对新问题,看看谁能挑战成功。

师:你能找出36所有的因数吗?解决这个问题首先要考虑什么样的数是36的因数。如果有两个数相乘的积是36,那么这两个数都是36的因数。例如,1×36=36,那么1和36都是36的因数。

师:怎样才能有条理地找出36的因数呢?能把36的因数全部写出来吗?请同学们试着在作业本上写一写。(学生活动)

师:从1开始,想哪两个数相乘得36,我们就可以成对地写出36的因数,一直找到两个乘数最接近为止。

师:刚才是利用乘法算式找因数,除法是乘法的逆运算,我们是不是也可以用除法算式找一个数的因数呢?

师:在除法算式36÷1=36中,我们可以找到36的两个因数1、36。同学们能接着有顺序地往下写吗?小组里讨论后,完成课本71页上这道例题的填空。(学生活动)

师:看看老师的填法和你一样吗?

师:求一个数的因数,可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重复、不遗漏。

流程6:完成“试一试”,总结一个数的因数的特点

师:下面请同学们用你喜欢或熟悉的方法分别写出15的因数和16的因数。(学生活动)

师:你的答案和屏幕上的一样吗?

师:我们又找到了求一个数的因数的方法,并分别求出了36、15、16的因数。(出示)观察这几个例子,关于因数你又有什么发现? (学生活动)

师小结:一个数最小的因数是1,最大的因数是它本身;一个数因数的个数是有限的。

第四段:深化认识,巩固方法

流程7:完成想想做做第2题

师:下面我们运用倍数和因数的知识解决两个实际问题。首先请看课本72页上的想想做做第2题。

师:填表后再讨论回答这样几个问题:表中每栏的“应付元数”各是怎样算出来的?都有什么共同特点?你还能说出哪些4的倍数?能把4的倍数全部说完吗?(学生活动)

师:表中“应付元数”都是4的倍数,4的倍数还有12、16、20等等,有无数个。

流程8:完成想想做做第3题

师:请看想想做做第3题。先填表,再讨论回答下面的问题: 表中每栏的“每排人数”各是怎样算出来的?“排数”和“每排人数”都是24的什么数?在填表的过程中你还受到了什么启发?(学生活动)

师: 24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中“排数”和“每排人数”都是24的因数。在填表的过程中我们会发现一对一对地找一个数的因数比较方便。

第五段:数学游戏

流程9:数学游戏

师:请同学们拿出写有自己学号的卡片,我们一起来做个游戏。看一看,想一想,你卡片上的数是否符合下面的条件,符合的请举起卡片,挥一挥。(出示)我是5,我找我的倍数;(学生活动)我是18,我找我的因数;(学生活动)我是9,我找我的倍数;(学生活动)我是56,我找我的因数。(学生活动)

第六段:全课总结 拓展延伸

流程 10:课堂总结

师:同学们,这节课我们认识了倍数和因数,探索了找一个数的倍数和因数的方法,根据乘法算式,用这一个数分别乘1、乘2、乘3……可以有顺序地找到它的倍数。一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。找一个数的因数可以想乘法算式,把一个数写成两个数相乘的积,乘数就是这个数的因数;也可以想除法算式,用一个数依次去除以1、2、3……,能得到整数商的,除数和商就是它的因数。写因数时根据算式有顺序的一对一对地写比较方便,不容易遗漏或重复。一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

流程11:教学“你知道吗?”

师:最后老师给同学们介绍一个和因数有关的数学小知识——完美数。

师:什么是完美数呢?通过这节课的学习同学们已经知道了任何一个自然数的因数中都有1和它本身,人们把小于它本身的因数叫做这个自然数的真因数。例如6的所有真因数是1、2、3, 1+2+3=6。像这样,一个数所有真因数的和正好等于这个数,数学家就把这个数叫做完美数。

师:在1—400的自然数中,还有一个完美数,它比20大,比30小,同学们有兴趣分小组找一找吗?(学生活动)

师:找到了吗?这个数是28,28的真因数有1、2、4、7、14,1+2+4+7+14=28。最早发现完美数的是古希腊著名数学家毕达哥拉斯,之后人们就开始了对完美数的研究,又找出了496、8128、33550336、8589869056……这样一些数。 仔细观察同学们会发现,完美数还有一些有趣的性质,例如:(1)至今发现的完美数,末位数字都是6或者8,而且当末位数字是8时,它的前一位数字一定是2。另外完美数都可以写成连续的自然数的和: 例如 6=1+2+3;28=1+2+3+4+5+6+7 ……

师:数学家们至今才发现了29个完美数。关于完美数的研究还没有到此为止,新的探索等待着同学们一起去参与。

倍数与因数教学设计篇五

1、使学生结合具体情境初步理解因数和倍数的含义,初步理解因数和倍数的关系;

2、使学生依据因数和倍数的含义以及已有乘、除法知识,通过尝试、交流等活动,探索并掌握找一个数的因数和倍数的方法。

3、渗透事物之间相互联系、相互依存的辩证唯物主义的观点,培养学生抽象、概括的能力。教学重点:理解因数和倍数的含义。

师:同学们,你们知道吗?人类最早对数学的研究就是从自然数开始的。看似简单的自然数,里面蕴藏着无穷的知识和奥秘。这节课我们就来研究有关自然数的一些知识。 (课件出示:12个小正方形)

师:请同学们看大屏幕,这里有12个完全一样的小正方形,大家可以把它们拼成一个长方形吗?生:可以。

师:怎样拼成一个长方形呢?谁能用一个乘法算式把你的想法表达出来?

生1:1×12=12生2:2×6=12生3:3×4=12 (板书:1×12=12 2×6=12 3×4=12)师:还有吗?生:没有了。

师:我们先来看看第一个算式,(点击课件)根据1×12=12,大家猜猜看,他每排摆几个?摆了几排?生:每排摆12个,摆一排。

师:这是一种情况,还有别的可能吗?生:每排摆1个,摆了12排。

师:是这样摆的吗?(点击课件出示摆法)师:根据2×6=12,你能猜出它的摆法吗?

生:每排摆6个,摆了2排。每排摆2个,摆了6排。师:像这样吗?(点击课件出示摆法)

师:我们来看最后一个乘法算式3×4=12,这个算式刚才是哪位同学说的?你能说说你的摆法吗?

师:每排摆4个,摆了3排。也有可能每排摆了3个,摆了4排。(边说边点击课件出示)大家同意吗?生:同意。

师:同学们可别小看这三个乘法算式,它们不但可以清楚的表示出这几种拼法,而且还蕴含着其他的数学知识呢。我们就以3×4=12这个算式为例,在数学里面,我们就说3是12的因数,4也是12的因数,反过来说12是3的倍数,12也是4的倍数。今天这节课我们就来研究因数和倍数。(板书课题:因数和倍数)

师:还有两个乘法算式呢,大家知道谁是谁的因数,谁是谁的倍数吗?生:知道。

师:同桌两人相互说说吧。开始师:谁来说第一个算式?(点击课件)

生:1是12的因数,12是12的因数。12是1的倍数,12是12的倍数。师:同意吗?

生:同意。(点击课件出示)师:2×6=12这道算式谁来说一说?

生:2是12的因数,6是12的因数。12是2的倍数,12是6的倍数。师:说得真好,刚才两位同学表述得非常完整。因数和倍数就像一对好朋友,我们在说的时候一定要说清谁是谁的因数,谁是谁的倍数,缺一不可。(课件出示)

师:通过这三道乘法算式我们找出了12的因数,12的因数有哪些呢?一起来说一说。引导学生一组一组的说。师:12还有其它的因数吗?生:没有了。师:为了方便,我们在研究因数和倍数时所说的数指的是整数(一般不包括0)(课件出示)

师:这里还有5个数,大家看看哪两个数之间存在因数与倍数的关系?谁来说一说?

(课件出示2,3,5,18,25)生自由发言。

师:我刚才听到好几个数都是18的因数。哪位同学能在这5个数中找出18的因数到底有哪几个?生1:2,3生2:18 ……

师:看来我们要找出18的一个或两个因数很容易,(在所有的整数中,18还有其它的因数吗?)怎样才能把18的所有因数都找出来呢?有没有什么好的方法?四人一小组讨论讨论,讨论完后把方法写出来。学生讨论,教师巡视指导。

师:哪一组来说说你采用的是什么方法?生1:1×18=18 2×9=18 3×6=18生2:18÷1=18

18÷2=9

18÷3=6 ……

(展示三个小组的做法)师:大家琢磨琢磨这几种看似不同的方法有相同的地方吗? (引导学生发现其实都是运用了乘法口诀,通过一个算式能找出两个因数,也可以说是一对因数)

师:很有道理。我们一起来看看18的因数是怎样一对一对找出来的。首先由1×18=18,我们可以找到…生:1和18生:由2×9=18,我们可以找到2和9,由3×6=18,我们可以找到3和6。

板书:6

师:找完了吗?生:找完了。

师:我们把18的因数按照从小到大的顺序完整的说一遍。 (学生齐说,老师用手势引导)下面我们把它写下来。

(师板书:18的因数有1,2,3,6,9,18)

师:18的因数还可以像这样表示(点击课件出示集合图)

师:我们刚才找出了18的所有因数,大家认为要想把一个数的因数找完整应该注意些什么?生:要按照一定的顺序。师:你说得真好。还有需要注意的吗?生:要一对一对的找。

师:这两位同学总结的方法很不错,大家听清楚了吗?谁能完整的说一说?

生1:有序的、一对一对的找。师:你来说一说。

生2:有序的、一对一对的找。

师:对,按照大家说的这种方法我们就能很快的把一个数的所有因数找出来。那找到什么时候为止呢?请大家看18的最后一对因数是几和几?生:3和6。

师:为什么不接着往下写了?生答。

小结:其实找因数就像我们数学中的相遇问题。最开始是1和18,离得很远,接着是2和9,有点近了,再接下来是3和6,更近了。3和6之间的整数只有4和5,都不是18的因数,所以没必要再往下找。

师:请大家按照这种有序的一对一对的找的方法试着找一找30和36的所有因数。在作业本上写一写。

师:哪位同学来说说30的因数你是怎么找的? (投影展示)学生说说自己的想法。

师:大家同意他的想法吗?和他一样的请举手。

师:既然大家都用了这种方法,那么老师有一个问题想请教同学们,30的最后一组因数是5和6,找到这儿的时候还需要继续找吗?为什么?

生:因为5和6已经挨着了,它们之间已经没有整数了。

师:说得真好,我们按照一定的顺序,一对一对地找出了30所有的因数。36的因数谁来说一说。生汇报,课件演示。

(出示到6和6时,还找吗?)生:不找了。师:因为…

生:因为6和6已经重合了,它们之间更不可能有其它的整数。师:最后一组出现了两个相同的因数,怎么办?生:我们就可以只写一个。 (演示:去掉第二个)

师:36的因数有哪些?请大家有顺序的说一说。 (生说,课件演示)

师:找一个数的.因数大家会了吗?生:会了。师:下面老师口述两个数,看看哪个同学能够很快地说出它的所有因数。我们来比一比。师:1的因数有…生:1师:还有吗?生:没有。师:7的因数呢?生:1、7。

师:找一个数的因数的方法大家掌握得非常好,我们一起来看看所找的这些数的因数,它们有什么共同点?(课件出示)生:所有的数的因数都有1。

(课件出示)一个数最小的因数是( 1 ),师:一个数的最大因数是什么?生:它本身。

(课件出示:一个数的最大因数是它本身)

师:既然一个数有最大的因数,那么一个数的因数个数是()。

师:我们学会了找一个数的因数,那么找一个数的倍数大家会吗?试一个怎么样?生:好。

(课件出示:你能找出多少个2的倍数)

师:同桌相互说着听一听。(师板书:2的倍数有)师:谁来说一说?

生:2,4,6,8,10……(生边说师边板书)师:写得完吗?生:写不完。师:那怎么办?

(引导学生用省略号表示)

一个数的倍数同样可以用集合图表示(点击课件,出示集合图)师:2的倍数我们是找出来了,谁能告诉我,你是用什么方法找得吗?生:2×1=2 2×2=4 2×3=6 2×4=8 2×5=10…

师:找2的倍数我们可以2来分别乘1、2、3、4、5…所得的积就是它的倍数了。找其它数的倍数我们能用这种方法吗?生:能。

师:请大家试着在这条数轴上找出3的倍数。一起说一说。 (课件演示)师:说得完吗?生:说不完。

师:这还有两个数5和7,哪位同学能够很快的说出它们的倍数。(课件出示)

学生汇报。(课件出示)

师:通过上面的例子,你发现一个数的倍数有什么特点吗?生1:一个数的最小倍数是它本身。生2:一个数的倍数个数是无限的。 (课件跟随出示:一个数的最小倍数是它本身。一个数的倍数个数是无限的)

师:今天的新知识即将告一段落,下面的一些题大家看看会做吗?

1、投影出示填空题。

① 24的最大因数是(),最小倍数是()

②只有一个因数的数是()

③ 15的因数有()。

④ 6的倍数有()(写出5个)

⑤一个数的因数个数是(),一个数的倍数个数是()。

师:大家说得真棒,我们来看看这几位同学说的对吗?

2、谁说得对?(投影出示)

师:看来凭这几道题要想难倒同学们,还真不容易,不过我还真不想放弃,这还有两道题,大家愿意接受挑战吗?猜一猜(1分)考考你

师;看来我不想放弃都不行了,同学们太聪明了。

师:聪明的同学们,谁能说说通过这节课的学习你有什么收获?

师:既然我们学会了找一个数的因数,那就请同学们把自己编号的所有因数写下来。

生开始写。

师:编号是6的同学请站起来,你真幸运,知道为什么吗?我们一起来看看6的因数。

课件出示。

师:我们如果把最大因数它的本身去掉,从剩下的三个因数中你会发现什么?

生:1+2+3=6

师:这剩下的因数和刚好等于6,也就是说刚好等于这个数的本身。这样的数我们把它叫做完全数,也叫完美数。我们全班同学的编号中大家知道有几个完美数吗?

生:……

师:只有两个。在1到40000000之间只有5个完美数。最早研究完美数的是生活在2500年前的古希腊数学家毕达哥拉斯,到20xx年,人们在无穷无尽的自然数里,一共找出了40个完美数。我们一起来看看前6个完美数。当然,人们至今仍然没有停止寻找完美数的步伐。同学们,知识是无穷无尽的,在知识的海洋里我们也应该有科学家的这种孜孜不倦,认真执著的精神。

倍数与因数教学设计篇六

第一课时

复习内容:因数和倍数。

复习目标:

1:通过整理复习,使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别,

2:掌握2、5、3的倍数的特征,掌握求因数、倍数、最大公因数和最小公倍数的方法,逐步培养学生的抽象思维能力。

复习重点:自主梳理知识,形成自己的认知结构。

复习难点:辨析和理解知识间的区别和联系。

教学步骤

一、巩固相关概念,理解它们的区别与联系。

同学们回忆一下,有关因数与倍数我们学到了什么?介绍了哪些概念?

板书概念名称,并让学生说出每个概念及概念之间的区别与联系。引导学生深入理解相关概念,并形成相应的知识网络。

二、巩固练习

1、复习自然数、整数、奇数、偶数、质数、合数。

(1)在2、3、0、91、0.25、1、65和50中,()是自然数,()是奇数,()是偶数,()是质数,()是合数。

(2)教材第138页第2题。

学生根据题目要求写出答案,并集体交流。

将其中的合数分解质因数。

问:质数与分解质因数有什么不同?

(3)师小结:自然数按能否被2整除分为奇数和偶数。自然数(0除外)按因数的个数分为1、质数和合数。

2、复习因数、倍数、最大公因数、最小公倍数和互质数。

判断。完成141页第1题(引导学生完成,教师订正)

补充:(1)一个数的倍数都比它的因数大。()

(2)4.2÷0.6=7,我们说4.2是0.6的倍数。()

说明:“4.2是0.6的7倍”是对的,但几倍与倍数是有区别的。因数和倍数只在整数范围内研究。所以,我们不能说0.6是4.2的因数,4.2是0.6的倍数。

(3)24÷6=4,我们说24是倍数,6是因数。()

(4)是互质数的两个数一定是质数。()

问:互质数与质数有什么不同?

(5)两个质数相乘的积一定是合数。()

(6)如果一个自然数是6的倍数,那么它一事实上是2的倍数。()

小结:一个数的因数个数是有限的,最小是1,最大是它本身。一个数的倍数的个数是无限的,最小是它本身,没有最大的倍数。

3复习2、3、5的倍数的特征。

做教材138页第1题

学生独立完成,说一说自己是怎样想的?

4、复习最大公因数和最小公倍数。

完成第141页第2题(让学生独立完成,集体订正)

小结:当两个数是互质数时,它们的最大公因数是1,最小公总人倍数数是它们的乘积。当较大数是较小数的倍数时,较小数是它们的最大公因数,较大数是它们的最小公倍数。

三、全课总结(略)

四、作业:

课后反思

复习课是根据学生的认知特点和规律,在学生学习数学知识的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决实际问题的能力为主要任务的一种课型。这与我们教研组以前提出的复习课要进行“知识梳理、查漏补缺、巩固提升”是基本一致的。本节课的流程也是“知识梳理、查漏补缺、巩固提升”这样三步骤。

一节课下来,通过讨论和自己的.进一步思考,觉得还是有一些不足。

1.课堂不够开放。

开放的数学课堂已经成为当前数学课堂教学形式的主流。现在的数学课堂教学应充分关注学生的学习情感和学习体验。在复习课的教学中,应给学生提供充分的“自我回忆”、“自我整理”、“质疑问难”、“自我反思”的空间。这与传统的复习课中,教师将事先准备好的系统的知识结构图呈现在学生面前,供学生复习是有很大区别的。

这节课中,学生的自我知识的整理,还可以进一步放手。可以完全由学生自己来完成,一个人完成不了的,可以小组合作完成。只有通过真正的自我整理,学生才会形成清晰的知识结构。

在回忆了知识点之后,还可以设计这样一道开放题:请你从7、14、21、25、35这列数中找出与众不同的一个,并说明理由。这样可以充分激起学生的知识储备,灵活主动地运用知识解决问题。

2.学生的自我评价和反思还不够。

让学生对复习的结果进行评价与反馈。教育心理学十分重视教学评价与反馈,认为通过教学评价给予学生一种成功的体验或紧迫感,从而强化或激励学生好好学习,并进行及时的反馈和调控,改进学习方法。老师可以这样提问促进学生反思:你认为哪些地方是容易搞错的?或者说你需要提醒大家注意哪些问题?

倍数与因数教学设计篇七

1.通过动手操作和写不同的乘法算式,认识倍数和因数。

2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。

人教版五年级下册第二单元《因数与倍数》第一课时

1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

2.教师准备多媒体课件。

一、创设情景,明确探究目标

师:人与人之间存在着许多种关系,我和你们的关系是……?

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

1.操作激活。

师:我们已经认识了哪几类数?

生:自然数,小数,分数。

师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

2.全班交流。

1×12=12 2×6=12 3×4=12

12×1=12 6×2=12 4×3=12

12÷1=12 12÷2=6 12÷3=4

12÷12=1 12÷6=2 12÷4=3

师:在这3组乘、除法算式中,都有什么共同点?

生汇报。

师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

小组合作,交流汇报。

师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。

师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

3.举例内化:

你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)

4.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

生:因为没有说明18是谁的倍数,所以不对。

师:你认为怎样说才正确呢?

生:我认为应该这么说:18是3和6的.倍数,3和6是18的因数。

师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

二、自主探究,找因数和倍数

1.拓展提升,主动建构:

⑴迁移尝试:请学生试着找出36的所有因数。

⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法( )×( )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。

⑶启迪思考:怎样找才能不重复不遗漏?

小组合作,自主探究,汇报交流。

找一个数的因数时要做到不重复也不遗漏,方法可以有:

用乘法( )×( )=36的方法,一对一对地写;

或者是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写。

36的因数有:1,2,3,4,6,9,12,18,36。(板书)

⑷试一试找20的所有因数。

⑸介绍36的因数的另一种写法----集合

用集合形式写18的因数

2.创设情境,自主探究:

请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。

请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)

3.迁移内化,自主探究:

⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。

2的倍数有:2,4,6,8,10,12……

5的倍数有:5,10,15,20,25……

⑵引导观察:请学生观察以上这些数的倍数,有什么发现?

(一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)

(3)还记得因数吗,出示课件

观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)

三、变式拓展,实践应用

指导学生做书本“练习二”的第2题和第3题。

四、全课总结

师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?

课堂练习:游戏:“我的朋友在哪里?”

游戏规则:(1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”(2)相应学号的同学站起来,其他同学判断是否正确。

作业安排:

引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数

倍数与因数教学设计篇八

1、依据倍数和因数的含义和已有的乘除法知识,自主探索总结找一个数的倍数和因数的方法.

2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。教学重点:理解因数和倍数的含义.教学难点:自主探索并总结找一个数的倍数和因数的方法.教学过程:

脑筋急转弯:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?

教师说明:人和人之间的关系是相互依存,数和数之间也是相互依存的。揭题:

1、创设情境。

用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。

学生汇报拼法,教师依次展示长方形的拼图,并板书:

4×3=1

26×2=12

12×1=12

教师根据4×3=12揭示:4×3=12

12是4的倍数,12也是3的倍数,4和3都是12的因数。提出要求:你能用倍数和因数说一说6×2=12

12×1=12吗?

2、深化感知。

(1)你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?

教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

1、设疑。

在刚才的学习中,我们知道了3的倍数有

12、18。除了

12、18还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。

2、交流。

揭示“有序”,为什么要有序地写倍数呢?全班讨论:“你是怎么写3的倍数的?”。

13×

2 3×

3……

3

3+3

6+3

……

一三得三二三得六三三得九

引导学生讨论得出:用依次×

1、×

2、×3……写出3的倍数。

3、深化:请写出2的倍数,5的倍数。

4、引导观察,发现规律。

小组讨论:观察这三道例子,你有什么发现?全班交流,概括规律。

5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。

1、设疑。

刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。

请写出36的所有因数,

2、组织讨论。

你是怎么找36的因数的?

( )×( )=36从一道乘法算式中可以找到2个36的因数,6×6=36呢?

36÷( )=( )从一道除法算式中也可以找到2个36的因数。

3、讨论“多”。问:写得完吗?你可以按照什么顺序写?

师动画演示36的因数(从两端往中间写),同时指出:当两个因数越来越接近时,也就快要写完了。

4、巩固深化。

请写出15的因数,16的因数。学生练习后组织评讲。

5、引导观察,发现规律。

问:通过观察这三道例子,你能发现什么规律?

6、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。

1、快乐大转盘

2、猜数游戏。

集体研讨发言稿

这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数和因数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。

一、设疑迁移,点燃学习的火花。

良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

教学找一个数的.倍数时,我依据学情,设计让学生独立探究寻找3的倍数。学生发现3的倍数写不完时面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。教师一声亲切的问候:“怎么停下来了呢?”、一声惊讶:“哦!写不完呀?”、一句激励:“能想出办法吗?”。看似教师“怠工”的预设,是为了学生“越位”的生成

二、渗透学法,形成学习的技能。

由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我设计了尝试练习引出冲突讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加

3、依次乘

1、

2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

三、活用教材,拓展学习的深度。

教材中安排36÷()=()这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助()×()=36来寻找一个数的因数。

课尾,我设计了一两个游戏,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。

纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。

倍数与因数教学设计篇九

北师大版数学实验教材五年级上册第一单元“倍数和因数”第三课时。

1、经历探索3的倍数的特征的过程,理解3的倍数特征,能判断一个数是不是3的倍数。

2、培养学生分析、比较、猜想、验证的能力,提高学生的合情推理能力。

1、单元内容简介:

本单元是在学生学过整数的认识,整数的四则计算,小数、分数、负数的认识等知识的基础上展开学习的。本单元的学习内容主要包括认识自然数和整数,倍数与因数,找倍数;2、5、3倍数的特征;找因数;质数与合数,奇数与偶数等知识,使知识进一步系统化。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。

本单元的知识属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念的前后联系又很紧密,部分学生学习时会有一定的困难。教材明确规定在研究倍数与因数时,限制在不是零的自然数范围内研究,避免由此而带来的一些小学生尚不必研究的问题。

2、本节课内容简介:

教材把课题确定为“探索活动(二)”,主要目的是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么3的倍数有什么特征呢?”的问题,目的是引导学生思考和探索3的倍数的特征。教学时,可以借助这个问题引导学生提出猜想。在探索3的倍数特征时,教材利用100以内的数表来研究,先让学生找出3的倍数,再观察特征,说说有什么发现,学生可能受知识迁移的影响去研究个位上的数与十位上的数,但都无法发现规律。适当的时候,教师可以作一定的提示:“将3的倍数每个数的各个数字加起来观察呢?”以帮助学生逐步发现规律。在初步得出结论的基础上,教师应进一步提出:“这个规律对三位数是否成立?”的问题,促使学生能自己找几个三位数来验证规律。需要注意的是在日常的练习与学习评价时,一般只要求学生判断100以内的3的倍数。

学生经历了课程改革四年的时间,已经养成了动脑思考的习惯,能根据材料选择相关的信息进行讨论、交流与研究,积极进行小组合作,更为重要的是能把信息进行重新组合,从而选择有用的信息进行问题的研究。当一个挑战性的问题来临时,学生的表现一般是群情激昂,对数学问题有着浓厚的研究兴趣,可以说,学生有了一定的自学与研究能力。

1、借助学生的学习经验与基础,提出数学问题,引导学生猜测。

2、利用100以内的数表,在猜测的基础上,研究并观察3的倍数的特征。

3、通过直观学具的操作,进一步认识3的倍数的特征。

4、引导学生验证发现的规律。

5、在练习的基础上,运用3的倍数的特征去研究9的倍数的特征。

1、用3,4,5三个数字按要求组成三位数。

(1)组成2的倍数。

(2)组成5的倍数。

2、学生用语言描述2,5的倍数的特征。

一点想法:

这个过程,比教材的要求要稍微高一点,教材上的要求一般是在100以内的数种研究2,5,3的倍数,这里面有一个考虑,拓展到三位数中来复习旧的知识,使复习起到桥梁的作用,进一步理解2,5的倍数的特征。

1、能不能组成是3的倍数的三位数。

2、3的倍数有什么特征?

1、进行猜想。

(1)学生面对问题进行猜想。

(2)教师根据学生的猜想进行适当的引导。

学生可能出现的情况:

(1)猜测个位上是3,6,9的数是3的倍数。

(2)个位上能被3整除的数能被3整除。

2、探索猜想。

(1)学生用3,4,5三个数字组成是3的倍数的三位数。

(2)学生举例子:比如453,543。

(3)学生如果出现345或354等例子,教师可以写在黑板上,不用多加评论,作为后续的学习内容。

(4)在这个过程中,学生可能会得出猜想结论的成立,即:个位上是3,6,9的数是3的倍数。

3、验证猜想。

(1)让学生举例子对猜想的结论进行验证。

(2)在这个过程中,学生可能会发现下面两种情况。

①15是3的'倍数,但是个位上的数字是5,不是3,6,9。

②16个位上的数字是6,但是不是3的倍数。

(3)猜想的结论不成立。

(4)让学生对猜想的结论不成立这个问题,提出自己的想法。

在讨论和交流中明白对于一个结论是否成立,只举一个正例是不够的,但是只要举出一个反例就可以推翻一个结论。

1、问题冲突:那么多的数,我们怎么找呢?我们要聪明的找,从比较小的数开始找。

2、请在下表中找出3的倍数,并做上记号。

(教师出示100以内数表,学生人手一张,在学生活动后,组织学生进行交流,并呈现学生已圈出3的倍数的100以内数表,如下图)

3、观察3的倍数,你发现了什么?与同桌交流一下。

(1)在这个过程中,教师要作为一个倾听着,听学生有什么发现,有什么困惑。

(2)学生发现个位上的数字没有什么规律,十位上的数字也没有什么规律。

4、教师引领。

(1)斜着观察,你发现了什么?

(2)在学生观察思考的基础上,根据学生的实际情况提供新的思考点:将每个数的各个数字加起来试试看。

5、得出结论。

一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

6、验证结论。

(1)利用100以内数表来验证。

(2)延伸到三位数或更大的数。

①回到我们课始的问题,用学生写出的345或354等例子进行验证,

②写一个更大的数试试看。

(3)完成课本第7页的试一试和练一练第1题和第2题。在学生独立完成的基础上,进行讨论和交流。注意对学习困难学生的指导和帮助。

(1)教师和学生一起回顾整节课的思考过程,一种学习方法的指导。

(2)回顾学习的知识有哪些,再次进行整理与归纳。

1、猜想并验证9的倍数的特征。

(1)学生阅读教材,按照教材上几个问题分层次展开研究。

(2)个人独立思考,小组研究的基础上进行全班的交流。

特别说明:这个学习过程可能在课内完成不了,可以延伸到课外,让学生积极主动地进行探索与研究,一定让学生经历涂、画等过程,使学生获得真实的体验。

倍数与因数教学设计篇十

人教版数学五年级下册p12一14,练习二。

一、操作空间,初步感知。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.学生动手操作,并与同桌交流摆法。

3.请用算式表达你的摆法。

汇报:1×12=12,2×6=12,3×4=12。

【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

二、探索空间,理解新知。

1.理解因数和倍数。

(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

(2)用因数和倍数说说算式1×12=12,2×6=12的关系。

(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括o)。

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。

师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。

生1:1,2,3,4,9,12,36。

生2:1,36,2,18,3,12,4,9,6。

生3:1,4,2,36,9,3,6,12,18。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。

(3)30的因数有哪些?

【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

3.求一个数的倍数。

(1)3的倍数有:——,怎样

有序地找,有多少个?

找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:一o

【评析】

由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

4.发现规律。

观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是i,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

【评析】

通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。

师生共同总结:

(1)因数和倍数是相互的,不能单独存在。

(2)找一个数的因数和倍数,应有序思考。

四、拓展空间,应用新知。

1、15的因数有:——,15的倍数有:——。

2.判断。

(1)6是因数,24是倍数。( )

(2)3.6÷4=0.9,所以3.6是4的因数。 ( )

(3)1是1,2,3,4?的因数。 ( )

(4)一个数的最小倍数是21,这个数的.因数有1,5,25。( )

3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

4、举座位号起立游戏。

(1)5的倍数。

(2)48的因数。

(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。

留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。

引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

倍数与因数教学设计篇十一

教科书12---16页的学习内容

通过对比学习,加深因数和倍数意义的理解,通过在意义、找的方法以及计数等几个方面对比,进一步理清因数与倍数的区别于联系,准确把握因数与倍数。

因数与倍数的对比。

用准确语言表达。

实物投影

(1)32÷4=8,所以42是倍数,4是因数

(2)12的因数只有2、3、4、6、12

(3)1是1,2,3,…的因数

(4)60的最大因数和最小倍数都是60

(5)5一共有10000个倍数

(6)一个数的倍数一定大于它的因数

因数能否数完?倍数呢?

1.分别找出16的因数和倍数

2.仔细想想,找出16的所有因数和倍数的感受相同码?

2.填表。

不同方面联系

意义寻找方法能否找完有无最大与最小表示

因数

倍数

1.选择正确答案的序号填在括号内。

(1)下面算式中能表示63是7的倍数的算式是()

① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3

(2)9的因数有( )个

① 2 ② 3③ 4

(3)不能够表示出“倍数”与“因数”关系的算式是()

① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68

1

6的倍数(写出5个) 32的所有因数 120的所有因数

教师可以鼓励学生课后查阅相关资料,把数学学习由课堂引申到课外。

通过本题计算在月球和火星上的体重,激发学生的好奇心,进行保护地球的环保教育

(1)48个同学表演团体操,把队伍的排列情况填写完整。

排数123456789

每排人数4824

每排都是48的因数码?

(2)乘坐碰碰车每人应付8元,你能把表填完整码?

乘坐人数12345……

应付元数816

【拓展练习】

1.填数。

2.五年(1)班同学参加植树活动,要植树24棵,如果要求每行植树的棵树相同,有几种不同的植法?如果要50棵树呢?

向学生简介林可以植树的好处,净化空气,还可以降低噪音,美化环境的功效。

(五)教学效果评价(小测题2—3题)

1.24的因数有哪些?

2.36是哪些数的倍数?

通过引导学生从一个数的倍数的定义出发,推出该数和任意非零自然数之积都是该数的倍数。2的倍数也就是2和任意非零自然数的'乘积,学生在列乘法算式时发现这样的算式是列不完的,总结出2的倍数的个数是无限的。进而推倒出:一个数的倍数的个数是无限的。只有最小的倍数,没有最大的倍数。学生亲历了知识的形成过程,既探究了知识,又形成了总结概括的能力。

倍数与因数教学设计篇十二

1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

理解因数和倍数的含义,知道它们的关系是相互依存的。

探索并掌握找一个数的因数的方法。

12个小正方形片、每个学生的学号纸。

一、认识倍数、因数的含义

1、操作活动。

(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

(2)整理、交流,分别板书4×3=1212×1=126×2=12

2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

3、今天我们就来研究倍数和因数的知识。

(揭示课题:倍数和因数)

(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

(2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?

指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

二、探索找一个数倍数的方法。

1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?

3、议一议:你发现找3的倍数有什么小窍门?

明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。

4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?

生独立完成,集体交流。注意用……表示结果。

5、观察上面的3个例子,你发现一个数的倍数有什么特点?

根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

6、做“想想做做”第2题。

学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?

二、探索求一个数因数的`方法。

1、学会了找一个数倍数的方法,再来研究求一个数的因数。

你能找出36的所有因数吗?

2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)

板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

5、试一试:请你用有序的思考找一找15和16的因数。

指名写在黑板上。

6、观察发现一个数的因数的特点。

一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

7、“想想做做”第3题。

生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

四、课堂总结:学到这儿,你有哪些收获?

五、游戏:“看谁反应快”。

规则:学号符合下面要求的请站起来,并举起学号纸。

(1、)学号是5的倍数的。

(2、)谁的学号是24的因数。

(3、)学号是30的因数。

(4、)谁的学号是1的倍数。

1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义

2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初

步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

3、p71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

5、教材p72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。。

倍数与因数教学设计篇十三

1 让学生理解倍数和因数的意义,掌握找一个非零自然数的倍数与因数的方法,发现一个非零自然数的倍数和因数中最大的数、最小的数以及一个非零自然数的倍数与因数个数的特征。

2 让学生初步意识到可以从一个新的角度,即倍数和因数的角度来研究非零自然数的特征及其相互关系,培养学生观察、分析与抽象概括的能力,体会数学学习的奇妙,对数学产生好奇心。

教学重点:理解倍数和因数的意义。

教学难点:从倍数和因数的意义出发,寻找一个非零自然数的倍数与因数。

一、直接导入

师:自然数是我们在数的王国中认识的第一种数,今天我们将从一个特定的角度,即倍数和因数的角度来研究自然数的特征及其相互关系。(板书课题:倍数和因数)

[评析:课始直接进入主题,揭示本节课新知识研究的方向,使学生产生探究新知的心理需求。]

二、教学倍数和因数的意义

(屏幕出示12个完全相同的正方形)

师:用这12个完全相同的正方形,能拼出一个长方形吗?(生:能)你能用一道乘法算式,表示你拼出的长方形吗?

生:我可以拼出一个3×4的长方形。

师:你们猜猜看,这会是一个什么样的长方形?

生:每排摆3个正方形,摆4排;或每排摆4个正方形,摆3排。(课件演示学生所猜的长方形,并让学生明白这两种拼法其实是相同的)

生:我还可以拼出一个2×6的长方形。

生:我还可以拼出一个1×12的长方形。(师问法同上,略)

师:同学们可别小看这三道算式,今天我们学习的内容,就将从研究这三道乘法算式拉开帷幕。

[评折:准确把握学生的学习起点,让学生根据所列乘法算式猜想可能拼成的长方形,大屏幕随之展示学生猜想的长方形,更加激起学生的求知欲。]

师:根据3×4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。

师:同学们一起来读一读,感受一下。

师:你读懂了些什么?(引导学生感知什么是倍数、什么是因数,即倍数和因数的意义;明白在乘法算式中,积就是两个乘数的倍数,两个乘数就是积的因数)

师:请你从6×2=12和12×1=12这两道算式中任选一题,用上面的话说一说。

师(出示18÷3=6):谁是谁的倍数?谁是谁的因数?为什么?

生:因为18/3=6可以改写成3×6=18,所以18是3和6的倍数,3和6是18的因数。(引导学生明白根据乘除法的互逆关系,在除法算式中也可以说谁是谁的倍数、谁是谁的因数)

屏幕出示:4是因数,24是倍数。

师:这句话对吗?(让学生理解倍数和因数是两个数之间的相互依存关系,必须说谁是谁的倍数、谁是谁的因数)

师:我们再看屏幕上这三道乘法算式(1×12=12、2×6=12、3×4=12),善于观察的同学一定发现在这三道乘法算式中。我们其实已经找到了12的所有因数,你知道都有哪些吗?(引导学生说一说)

屏幕出示一组数:36、4、9、0、5、2。

师:请你从这组数中任选两个数,用倍数和因数的关系来说一说。(生可能会选36和4、36和9、4和2这几组数)

设疑:

(1)为什么不选0呢?(让学生理解倍数和因数是针对非零的自然数)(屏幕演示将“0”去掉)

(2)为什么不选5呢?(例如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)(屏幕演示将“5”去掉)

(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数;当然,36也是36的因数,36也是36的倍数)

[评析:倍数和因数意义的学习层次分明。(1)猜想:由1 2个完全相同的正方形拼成一个长方形的.不同拼法,得出三道乘法算式。根据3×4=12这道算式中三个数的关系,让学生初次感知倍数和因数的意义。(2)拓展:根据除法算式中“存在一个自然数等于两个自然数乘积”这一条件,揭示除法算式中依然存在着倍数和因数的关系,拓展了对倍数与因数意义的理解。(3)深化:探索并感知倍数和因数的相互依存关系。“从一组数中任选两个数”说意义的训练,巩固与深化了对倍数和因数意义的理解。]

三、探讨找一个数的因数的方法

1 师:在刚才这组数(36、4、9、0、5、2)中,2、4、9和36都是36的因数。除了这些,36的因数还有吗?(生一个一个地举例)这样一个一个杂乱无序地找,你们觉得这种方法好吗?(生:不好!)不好在哪儿呢?

生:容易漏掉或重复。

师:你们有没有什么好办法,能一个不落地将36的所有因数都找到呢?同学们可以独立完成这个任务,也可以同桌的两位同学合作完成。如果你全部找到了,就请将36的所有因数写在练习纸上。同时将你找因数的方法写在横线的下方。(教师巡视,学生讨论交流)

展示学生的作品,学生可能出现的答案有:

(1)根据1×36=36、2×18=36……分别得出1、36、2、18、3、12、4、9、6等数都是36的因数;

(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等数都是36的因数。

在写法上,可能出现的答案为1、36、2、18、3、12、4、9、6(一对一对地写),或按照从小到大的顺序写,即1、2、3、4、6、9、12、18、36。然后引导学生比较这两种写法的不同。将方法优化:运用除法算式一对一对地找一个数的因数更为简便,并且不重复、不遗漏,做到答案的完整性;在写的时候,可以一头一尾地写,这样可以做到答案的有序性。(板书:有序、完整)

2 探讨一个数的因数的特征。

课件出示12的因数、15的因数和36的因数。(从小到大排列)

学生观察、讨论下面的问题(课件出示问题):一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?

课件出示描述一个非零自然数的因数的特征的表格(如下),学生讨论、交流后再反馈。

师(小结):一个非零自然数的最大因数是它本身,最小因数是1,因数的个数是有限的。

[评析:找一个数的因数是本节课的教学难点。教学中,教师调整教材的编排顺序,先学习找一个数的因,数,通过置疑“一个个地找36的因数,这种方法好吗?不好在哪”,启发学生根据因数的意义和乘除法的互逆关系,有序地找出36的所有因数,并及时优化方法。同时,引导学生自主探索,在观察中发现一个数的因数的有关特征,最后进行总结,培养了学生解决问题的能力。]

四、探讨找一个数的倍数的方法

1 师:我们已经掌握了如何有序地、完整地找出一个非零自然数的所有因数的方法。如果让你找出一个数的所有倍数,你会找吗?(生:会)那么,我们就一起来找找3的倍数。(学生试着找出3的倍数,教师巡视,对有困难的学生给予帮助)

2 师:你是怎样有序地、完整地找出3的倍数的?

生:用3分别乘1、2、3……得出3的倍数。

生:用3依次地加3得到3的倍数。

师:你认为哪种方法能更迅速地找出3的倍数?(学生讨论交流)

师:3的倍数能找得完吗?(生:找不完)那么,可以怎样表示3的倍数的个数呢?(生:用省略号表示)(相机板书:3、6、9、12、15……)

3 写出30以内5的倍数。(做在练习纸上)

4 课件出示3的倍数、4的倍数、5的倍数,让学生从最大倍数、最小倍数、倍数的个数三个方面去描述一个数的倍数的特征(见下表)。

师(小结):一个非零自然数的最小倍数是它本身,没有最大的倍数,所以倍数的个数是无限的。

[评析:借助学习一个数的因数的方法,以此为基础,让学生自主探索找一个数的倍数的方法。在探索交流中,优化寻找一个数的倍数的方法,获得一个数的倍数的特征。]

五、组织游戏,深化认识

师:这节课,我们通过三道乘法算式与倍数和因数进行了两次的亲密接触。第一次的接触,让我们了解了倍数与因数的意义;第二次的接触,通过找一个数的倍数和因数,我们了解了一个数的倍数和因数的特征。通过这两次的亲密接触,相信 同学们对于今天所学的知识,已经有了比较深刻的理解。下面,就让我们轻松片刻。一起来玩一个特别好玩的游戏,感兴趣吗?

游戏——请到我家来做客

(每位学生的手中,都有一张写有该名学生的学号卡片)

课件演示并配有话外音:春天来了,浓浓的春天气息让森林里好客的小动物们,纷纷拿出自己最珍贵的食物款待大家。

(1)屏幕上出现了可爱的小狗向同学们走来(配音):24的因数是我的朋友。如果你卡片上的数是24的因数,欢迎你,我的朋友!(卡片上的数若符合要求,就请这位学生站起来)

(2)屏幕上出现了笨笨的小猪向同学们挥手(配音):我邀请的朋友是5的倍数,喜欢我,就快快来吧!

(3)瞧!可爱的小猫咪也来了。(屏幕上出现了俏皮、可爱的小猫咪)配音:如果你卡片上的数是1的倍数,请来我家做客吧!

(每位学生卡片上的数都符合要求,所以全班学生都站了起来)

师:小猫咪这么好客,老师也想去她家做客。你们来为老师想一个符合要求的数,好吗?(生答略)

师:是不是所有的自然数都可以呢?

生:除了0。

屏幕出示:所有非零自然数都是1的倍数。

(4)配音:威严的老虎来了!它请的朋友很特别,它是所有非零自然数的因数。这个数是几呢?(生讨论交流)

屏幕出示:只有1才符合要求,因为1是所有非零自然数的因数。

六、挑战自我,拓展升华

师:虽然我们只合作了这短短的三十分钟,但老师已经深深感到我们这个班的同学非常聪明,不仅善于观察,而且爱动脑筋,所以老师特别准备了一个富有挑战性的节目想考考大家,你们敢不敢接受挑战?(生:敢!)

挑战——你猜、我猜、大家猜i(屏幕演示动画标题)

规则:下面每组数,去掉一个数,剩下的数便是其中一个数的倍数或因数。你能找出这个数吗?

(1)20、5、4、3。

答案:去掉3(屏幕演示隐去“3”),剩下的数是20的因数,或20是它们的倍数。

(2)4、12、18、3。

答案有两种:一是去掉18(屏幕演示隐去“18”),剩下的数便是12的因数,或12是它们的倍数;二是去掉4(屏幕演示隐去“4”),剩下的数便是3的倍数。

[评析:设计游戏环节,对整节课的知识点进行总结深化,并引导每位学生参与其中,积极主动地思考本节课所学的知识,教学过程真实、有效。]

七、全课总结

师:通过今天这节课的学习,你有什么收获?你们学得开心吗?玩得开心吗?其实。数学就是这么简单而有趣,让我们每天都乐在其中!

总评:

本节课的教学特色是严谨灵活、细腻奔放。在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略。

1 意义教学引导学生自主构建。

在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和5、3和4这几组数之间的有机联系。

本课中,倍数和因数的意义教学分三个层次:

1 借助三个问题让学生通过想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。

2 通过除法算式找因倍关系。

3 渗透倍数和因数的相互依存性。

2 合理组织教材,将找一个数的因数及其特征教学提前。

寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

教学中,教师出示一组数,如36、4、9、0、5、2,让学生从这组数中任选两个数,用倍数和因数的关系来说一说。

最后设疑:

(1)为什么不选o呢?(让学生理解倍数和因数是针对非零的自然数)

(2)为什么不选5呢?(如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)

(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数)

这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

3 寻找一个数的因数和倍数的方法让学生自己生成。

在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台。

寻找一个数的倍数和因数。方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

4 增强游戏中数学思维的含量。

知识在游戏中深化,在挑战中升华。

本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的游戏活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验。

倍数与因数教学设计篇十四

1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。

2、使学生依据倍数和因数的含义以及已有的乘法和除法知识,通过尝试和交流等活动,探索并掌握找一个数的倍数和因数的方法,能在1-100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中,进一步感受数学知识的内在联系,提高数学思考的水平。

理解倍数和因数的含义。

探索并掌握找一个数的倍数和因数的方法。

1、用12个同样大的正方形拼成一个长方形,可以怎样摆?

先独立思考,在同桌交流自己的看法,再集体交流。根据学生的回答,教师出示相应的拼法,并列式。

2、在4×3=12中,12是4的倍数,12也是3的倍数,3和4都是12的因数。你能照老师的样子试着说一说吗?如果有学生只说倍数和因数,让学生通过争论明白倍数和因数表示的是两个数之间的关系,因此一定要说谁是谁的倍数,谁是谁的`因数。

3、下面这些算式也能用倍数和因数表示吗?

16÷2=85+6=1118-6=12

学生如果有争论,让学生说说自己的理由。由16÷2=8可以得到2×8=16,实际上16是2和8的乘积,所以也可以用倍数和因数来表示。

4、你能自己写出一条算式,用倍数和因数来说一说吗?学生自己思考,写一写,然后集体交流。

1、谈话:3的倍数有哪些呢?我们来找找看。一分钟内完成。

1分钟内你们写完了吗?如果再给半分钟呢?为什么?

2、3的倍数有很多,我们不能都写出来,就用省略号来代替。下面,谁来说说看,3的倍数是怎么找的?小结:找一个数的倍数,只要用这个数去乘以1、2、3、。就能得到它的倍数。

3、填一填:2的倍数有________________________

5的倍数有________________________

4、观察上面的几个例子,你有什么发现?

先小组交流,再指名回答。

指出:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

1、尝试:用自己的方法找出36的所有因数。

(1)先思考再尝试。

(2)交流和评价

2、用这样的方法,找找16的因数和7的因数。

3、讨论:一个数的因数有哪些特征?

指出:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

练习一、二、三。

这节课你有什么收获?

让学生借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。

在教学找一个数的倍数时,让学生在1分钟内写3的倍数,再组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“1分钟内你们写完了吗?如果再给半分钟呢?为什么?”设疑,置疑,激发学生的反思力度,有效地激发了学生的求知欲望,从而积极主动地获得知识。

找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

倍数与因数教学设计篇十五

苏教版小学数学四年级(下册)第70-72页。

1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。

2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

3、增强学生学习数学的兴趣,感受到成功的快乐。

理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。

理解倍数和因数的含义及倍数和因数的相互依存关系。

学生:每人准备12个同样大小的正方形。教师:课件

一、认识倍数和因数

1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。

2分组操作活动,师巡视指导。

3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。

4、教学“倍数”和“因数”的概念。

(1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。

(2)齐读这三句话,板书课题:倍数和因数

(3)指名看式子说。

(4)请学生根据6×2=12和12×1=12两道算式,照样子说

一说哪个数是哪个数的倍数?哪个数是哪个数的因数?

追问:如果说12是倍数,3是因数,可以吗?为什么?

明确:倍数和因数都是指两个数之间的关系,是相互依存的。

教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9…….在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)

(5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,

三、探索找倍数和因数的方法

1、探索找一个数的倍数的方法

(1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生独立思考,再组织交流。

(2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:

3×1=(3)3×2=(6)……

追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?

根据学生的回答课件演示:3的倍数有3、6、9、12、15……

(3)完成后面的试一试。提醒学生注意有序的思考,并规范的表示出结果。

(4)一个数的倍数的特点。

提问:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。

提问:现在你能很快说出6的最小倍数是多少吗?10呢?

2、探索找一个数的因数的`方法

(1)提出问题:什么样的数是36的因数?

学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。

板书()×()=36

(2)提问:你能找出36的所有因数吗?启发:要做到不重复,不遗漏,怎样才能有条理地找出36的所有因数?

学生试着在练习本上列式找出。

(3)学生汇报交流,根据学生的回答课件演示。

(4)进一步启发:我们知道除法是乘法的逆运算,根据除法算式,也可以找一个数的因数。。根据36÷1=36可以找到1和36……

请同学们看书71页,完成书上的填空。

(5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。

学生汇报,说说你是怎样找的。

(6)观察发现

提问:观察上面的例子,你发现一个数的因数有什么特点?

小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。

提问:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?

四、巩固练习

1、“想想做做”第2题。

组织学生读题,理解题意。表中每栏的应付元数各是怎样算出来的?他们都是4的什么数?你还能说出4的哪些倍数?能把4的倍数全部说完吗?

2、“想想做做”第3题。

组织学生读题,理解题意。表中每栏的每排人数是各怎样算出来的?排数和每排人数都是24的什么数?

五、全课总结

这节课你学会了什么?

倍数与因数教学设计篇十六

人教版小学数学第十册教材12-13<<因数和倍数>>

1、 通过学生自学让学生理解掌握因数和倍数的意义,明确因数和倍数是相互依存的。

2 、通过学生合作学习,让学生掌握找一个数的因数的方法。

3、 培养学生的自学能力、观察能力、抽象概括能力以及学生的合作探究能力。

4 、培养学生的合作意识、探究意识、以及热爱学习数学的情感。

理解因数和倍数的意义

掌握找一个数因数的方法

一 、创设情境,引入新课

师:同学们,你们喜欢唱歌吗?

生:喜欢。

师:今天老师特别想听一首歌《世上只有妈妈好》,你们愿意唱给老师听吗?

生:(可以)生唱。

师:谁愿意介绍一下自己妈妈姓什么吗?

生:我妈妈姓马。

师:我们叫她马阿姨可以吗?

生:可以。

师:你能用马阿姨和陈果说一句话吗?

生:马阿姨是陈果的妈妈,陈果是马阿姨的儿子。

师:能不能单独的说马阿姨是妈妈,陈果是儿子?

生:不能。因为他们不能分开,必须说谁是谁的妈妈,谁是谁的儿子。

师:其实在数学中也有这样的两个数,它们是相互依存的,他们也是不能单独存在的,那就是——《因数和倍数》,今天我们一起来学习。

师:板书因数和倍数。请同学们齐读课题。

生:齐读课题

师:读了课题你想知道什么?

生1:想知道因数和倍数的意义。

生2:怎样找一个数的因数。

生3:怎样找一个数的倍数?

........

师:这些问题是老师告诉你们,还是你们自己去学习?

生:我们自己学习。

【评析:用学生最熟悉的歌创设情境,既激发了学生的兴趣,又拉近了师生之间的距离,创设了一个宽松、和谐的氛围,以此从熟悉的母子或父子关系出发,让学生理解了相互依存的关系,为理解倍数和因数的相互依存关系作铺垫,体现了数学来源与生活。】

二、自学引导

1 、请同学们带着想知道的问题先自学教材12-13,然后完成学案一

2 、检测自学情况

(一)、填空

(1) 3×4=12

3是12的( ) 4也是12的( )

12是3的( ) 12也是4的( )

2×6=12

2和6是12的( ) 12是2和6的( )

1×12=12

1和12是12的( ) 12是1和12的( )

12的因数有:( )

(2) a×b=c (a、b、c均为非零自然数)

a是c的( ) b是c的( )

c是a的( ) c是b的( )

(二)、判断

(1)、因为0.8×5=4 所以0.8是4的因数。( )

(2)、因为3×6=18 所以18是倍数,3和6是因数。( )

(3)、因为24÷6=4所以24是6的倍数,4是24的因数。

(生自学并完成学案一,师指导)

师:有谁愿意把你的学习作品展示大家。

生:展示学习作品。

师:看了张江楠的学习作品你想说点什么?(没有学生举手)你们没有问题,那老师有问题请教你们了。

师: 在 a×b=c 中, 为什么a、b、c均为非零自然数?

生:为了方便,我们研究因数和倍数只是整数(不包括零)

师:请同学齐读这句话。

生:齐读

师:因为0.8×5=4 所以0.8是4的因数。( )这句话对吗?

生:不对,因为0.8是小数不是整数。

师:因为3×6=18 ,所以18是倍数,3和6是因数。( )这句话对吗?

生:不对,因为因数和倍数是相互依存的,是不能单独存在的。

师:因为24÷6=4所以24是6的倍数,4是24的因数。

生:对

师:请读 a×b=c (a、b、c均为非零自然数)

a是c的( 因数 ) b是c的( 因数 )

c是a的(倍数 ) c是b的`( 倍数 )

生:齐读。

师:通过你们的自学初步理解因数和倍数的意义。你们会找一个数的因数吗?

生:会

师:我们试试行吗?

生:行

师:来个大的,还是小的。

生:来个大的。

师:30可以吗?

生:可以

师:学号是30的因数的请起立,(不完整)看来找一或几个不难,要找得既准确又完整,就需要方法了。你们有没有信心自己去探究。

生:有

师:那好,你们4人小组合作找出30的因数,并完成学案二。

【评析:把课堂留给学生,让学生通过自学完成学案,体现了学在前,老师指导在后,充分让学生独立思考,获取知识。这样通过自学----完成学案---适时指导,让学生真正成为学习的主人,理解因数和倍数的意义。】

三 、合作学习探究找一个数因数的方法

1 、小组合作找出30的因数有哪些?(有乘法和除法两种,用你们最喜欢的方法)。再组内讨论以下三个问题

( )×( )=( )

( )×( )=( )

( )×( )=( )

( )×( )=( )

........

30的因数有:( )

( )÷( )=( )

( )÷( )=( )

( )÷( )=( )

( )÷( )=( )

........

30的因数有:( )

(1)你们是怎样找一个数的因数的?

(2)你们找一个数的因数是怎样才能做到既准确,又完整的?

(3)你们找一个数的因数是找到什么时候为止?

2、小组汇报

生1:30的因数有(1 2 3 5 6 10 15 30)

师:你是怎样找一个数的因数的?

生1:1×30=30找到1 30

2×15=30找到2 15

3×1030找到3 10

5×6=30找到5 6

生2::30÷1=30找到1 30

30÷2=15找到2 15

30÷3=10找到3 10

30÷5=6找到5 6

........

生5:从1开始去乘一个数等于30的两个数就是30的因数。

生6:用30除以1到它本身能整除的就是30的因数。

生7:从1开始有序成对找到重复或接近为止

3 、引导学生总结找一个数因数的方法

从1开始用乘法或除法有序成对的找,找到重复或接近为止。

【评析:找一个数的因数级发及发现归纳其特点,教师让学生通过小组合作,相互评价,培养学生的合作意识,发挥学生的合作能力,归纳出找一个因数的方法,充分体现了学生是主体。】

四、目标检测

1、 找36、28的因数

(采用师生对口令方法,强调重复写一个)

2、先找出下列各数的因数,再观察这几组数据你有什发现写在括号里。

8的因数有:( )

11的因数有:( )

15的因数有:( )

24的因数有:( )

你的发现是( )

3你的学号是( )

你学号的因数有( )

学生完成后展示学习作品并汇报

生1:我发现了每个数的因数都有1。

生2::我发现了每个数的因数都有他本身。

........

生6:我发现了一个数的因数最小是1,最大是它本身。

生7:我发现了一个数的因数的个数是有限的,因为一个数的因数最小是1,最大是它本身

生齐读一个数的因数最小是1,最大是它本身。一个数的因数的个数是有限的。

4、游戏:

师:学号是25的因数的同学请起立。

学号是48的因数的同学请起立。

学号是18的因数的同学请起立。

1号你为什么不坐下

生:因为1是所有自然数的因数,坐下了还要起立。

师:同学们想挑战老师吗(想)比老师叫起立的人多。

生1:30的因数

生2:学号有两个因数的请起立。

生3:学号有三个因数的请起立。

........

生7:学号有因数1请起立。

生8:学号因数最大是自己学号的请起立。

【评析:找一个数的因数,归纳发现找因数的方法并不是难事,而对“一个数最大因数是它本身,最小因数是1”的理解有一定难度。教师在让学生做练习的同时发现规律,同时通过游戏加深了对知识的理解,在游戏中体会数学的乐趣。实现了巧练、活练,真正把数学运用于生活。】

五、总结反思

1、这节课你有什么收获?

2、如果还有不懂的小组内讨论。

【总评析:本节课总的可用六个字来概括,“引拨补、疑思用”师,即,教师:引——拨——补;学生:疑——思——用。学生通过自学,教师引导,产生疑问,在教师的指引下进行小组合作探究、分析、领悟,再加上教师的点拨,让全体学生进行反思、掌握学法、建构数学模型,找一个数的因数的方法,让学生从感性认识——理性认识——实践运用——拓展提高,经历了学习数学的过程,真正体会了学习数学的乐趣。本节课“虽已毕,但趣犹在”,留给我们回味的很多。】

板书设计:

因数和倍数

30的因数有:1 2 3 5 6 10 15 30

有序 成对 准确 完整

倍数与因数教学设计篇十七

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

1.掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

1.精简概念,减轻学生记忆负担。

(1)不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

(2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

(3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数学知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

第一课时:因数和倍数

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

掌握找一个数的因数和倍数的方法。

能熟练地找一个数的因数和倍数。

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有:1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的'过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数3的倍数5的倍数

2、4、6、8……3、6、9……5、10、15……

倍数与因数教学设计篇十八

1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数,学生能了解一个数的因数是有限的的;通过学习使学生掌握找一个数的因数的方法,能熟练地找一个数的因数。

2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3、在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

学情分析

学生在已学过整数除法的基础上进一步学习因数与倍数,理解因数和倍数的含义,掌握找一个数的因数的方法,能熟练地找一个数的因数。这节课这些知识点都是新知,教师需要在具体的教学活动中去感知辨析。

理解因数和倍数的含义,会找一个数的因数。

掌握找一个数的因数的方法,能熟练地找一个数的因数。

一、导入

课前交流:课开始之前,与学生交流人与人之间的关系。

师:在家里你和爸妈之间是什么关系?在学校我和你们的关系是?

师:对,我们是师生关系,我是你们的.老师,你们是我的学生。人与人之间的关系是相互依存的,不能单独存在。在数学这个大家庭里也存在着有这样相互依存关系因数和倍数,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、理解掌握因数和倍数的意义

(一)复习导入

教师用课件出示教材第5页例1,

教师:这些除法算式有什么相同点?生:被除数和除数都是整数。

引导学生观察图上的算式,把这些算式分为两类。

学生说出自己的分类方法,商是整数没有余数的分为一类,商不是整数的分为一类。

(二)因数和倍数的意义

1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

教师以商是整数的第一题为例说明,板书:12÷2=6。教师:12÷2=6在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2的倍数,2是12的因数。再交换除数和商的位置得12÷6=2,得出12是2和6的倍数,2和6是12的因数、

2、说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。

学生通过说一说其他的式子,理解在没有余数的整数除法中,被除数、除数和商之间的倍数与因数关系。

三、因数与倍数的关系

1、通过刚才同学们的回答,你发现了倍数与因数的关系是什么?

教师板书:因数与倍数是相互依存的。

2、用字母式子表示因数和倍数关系

学生同桌举例,并说出谁是谁的因数,谁是谁的倍数。

教师:在自然数中像这样的例子还有很多,举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

a×b=c,那么a和b是c的因数,c是a和b的倍数。(板书)

这里的a、b、c都是什么数,是自然数吗?非0自然数(板书)

3、注意:为了方便,我们在研究因数和倍数时,所说的数指的是自然数,而且一般不包括0。

4、下面的说法对吗?说出理由。

(1)因为20÷4=5,所以4和5是因数,20是倍数。

(2)因为7×4=28,所以7和4是28的因数,28是7和4的倍数。()

(3)13是13的因数。

(4)因为18÷1.8=10,所以1.8是18的因数,18是1.8的倍数。()

四、找因数的方法

1、出示例2:18的因数有哪几个?

自己找一找、写一写,在练习本上把算式记录下来。

学生尝试完成后汇报:(18的因数有:1,2,3,6,9,18)

教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

借助数轴来看18的因数是怎样快速地找到的。

找因数的方法:从小到大,一对一对有序地找,当下一对因数与前一对因数重复时就不要找了。

教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的,或一对一对地写,其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。

2、对口令,找因数

20的因数有:1,2,4,5,10,20

36的因数有:1,2,3,4,6,9,12,18,36

举错例(1,2,3,4,6,6,9,12,18,36)

教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

24的因数有:1,2,3,4,6,8,12,24

1的因数有:1,11

仔细看看,36的因数中,最小的是几,最大的是几?

3、你发现了什么?

(1)一个数的最小的因数是1,最大的因数是本身;

(2)一个数的因数个数是有限的;

(3)1是所有非零自然数的因数。

五、课堂作业

猜猜我是谁:

(1)我是所有非0自然数的因数;

(2)我的最大因数是12;

(3)我比5小并且有3个因数;

(4)我只有1个因数。

六、你知道吗?

了解完全数。

七、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

倍数与因数教学设计篇十九

xxxx小学 xxxxx

教学内容:教材例1、例2

教学目标

1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

教学重点:理解因数和倍数的概念。

教学难点:掌握求一个数的因数和倍数的方法。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

1.出示教材第5页例1。

12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

(1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

(2)分类:你能把上面的除法算式分类吗?

学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类

第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

(一)、明确因数与倍数的意义。(教学例1)

1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

2. 学生尝试。

教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。

3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括o)。

4. 即时练习。指导学生完成教材第5页“做一做”。

小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

(二)、探索找一个数因数的方法。(教学例2)

1. 出示例2:18的因数有哪几个?

(1) 学生独立思考。

师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

(2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

(3)采用集合图的方法。

教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

(4)练习。让学生找出30的因数和36的因数,并组织交流。

30的因数有1,2,3,5,6,10,15,30。

36的因数有1,2,3,4,6,9,12,18,36。

指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。

师:通过本节课的`学习,你有什么收获?

板书设计:

因数和倍数

12÷2=6 12是2和6的倍数

2和6是12的因数 18的因数有1,2,3,6,9,18。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

作业:教材第7页“练习二”第2(1)题。

第二单元:因数和倍数

第二课时:因数与倍数(2)

教学内容:教材p6例3及练习二第2(1)、3~8题。

教学目标:

知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

教学重点:掌握求一个数的倍数的方法。

教学难点:理解因数和倍数两者之间的关系。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

1.探索找倍数的方法。(教学例3)

出示例3:2的倍数有哪些?

师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

师:大家都是用的什么方法呢?

生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

生2:我也是用乘法,用2去乘1、乘2……

师:哪些同学也是用乘法做的?

师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

师:为什么?(因为2的倍数有无数个)

师:怎么办?(用省略号)

师:通过交流,你有什么发现?

引导学生初步体会2的倍数的个数是无限的。

追问:你能用集合图表示2的倍数吗?

学生填完后,教师组织学生进行核对。

(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

(1)一个数的最小因数是1,最大因数是它本身。

(2)一个数的最小倍数是它本身,没有最大倍数。

(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。

学生独立完成全部练习后教师组织学生进行集体证正。

集体订正时,教师着重引导学生认识以下几点:

(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

2.利用求倍数的方法解决生活中的实际问题

出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

理解题意,分析解答。

教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

倍数与因数教学设计篇二十

理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。

通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。

在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

教学重点:理解因数和倍数的含义。

教学难点:自主探索有序地找一个数的因数和倍数的方法。

教学课件。

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)

第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

【设计意图】引导学生从“整数的除法算式”中认识因数和倍数的意义,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。

3.理解因数和倍数的依存关系。

(1)独立完成教材第5页“做一做”。

(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而应该说4是24的因数,24是4的倍数。

4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

课件出示:

乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

(2)今天学的“倍数”与以前的“倍”又有什么不同呢?

“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。

(3)交流汇报。

【设计意图】“一个数的因数和倍数”与学生已学过的乘法算式中的“因数”以及“倍”的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的“因数”和“倍数”意义的难点。通过观察、对比、交流,引导学生发现一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

教学例2:

1.探究找18的因数的方法。

(1)18的因数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

因为18÷1=18,所以1和18是18的因数。

因为18÷2=9,所以2和9是18的因数。

因为18÷3=6,所以3和6是18的因数。

方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

因为1×18=18,所以1和18是18的因数。

因为2×9=18,所以2和9是18的因数。

因为3×6=18,所以3和6是18的因数。

2.明确18的因数的表示方法。

(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

(2)交流方法。

预设:列举法,18的因数有:1,2,3,6,9,18。

图示法(如下图所示)。

3.练习找一个数的因数。

(1)你能找出30的因数有哪些吗?36的因数呢?

(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

【设计意图】让学生通过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会“一对一对”有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及“最大因数、最小因数”的特征。

教学例3:

1.探究找2的倍数的方法。

(1)2的倍数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:利用除法算式找2的倍数。

因为2÷2=1,所以2是2的倍数。

因为4÷2=2,所以4是2的倍数。

因为6÷2=3,所以6是2的倍数。……

方法二:利用乘法算式找2的倍数。

因为2×1=2,所以2是2的倍数。

因为2×2=4,所以4是2的倍数。

因为2×3=6,所以6是2的倍数。……

(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)

2.练习找一个数的倍数。

你能找出3的倍数有哪些吗?5的倍数呢?

【设计意图】在理解“倍数”的.基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及“最小倍数”的特征。

1.从前面找因数和倍数的过程中,你有什么发现?

2.讨论交流。

3.归纳总结。

预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

1.课件出示教材第7页练习二第1题。

(1)想一想,怎样找不会遗漏、不会重复?

(2)哪些数既是36的因数,也是60的因数?

【设计意图】通过练习,让学生再次体会“1是所有非零自然数的因数”“一个数最大的因数是它本身”和“一个数的因数的个数是有限的”。同时,渗透两个数的“公因数”的意义。

2.课件出示教材第7页练习二第3题。

(1)学生独立完成,交流答案。

(2)思考:5的倍数有什么特征?

【设计意图】渗透5的倍数的特征。

3.课件出示教材第7页练习二第5题。

(1)学生独立完成,交流答案。

(2)你能改正错误的说法吗?

这节课我们学了哪些知识?你有什么收获?

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服