当前位置:网站首页 >> 作文 >> 分数的性质和意义教学设计模板通用

分数的性质和意义教学设计模板通用

格式:DOC 上传日期:2022-09-16 11:01:08
分数的性质和意义教学设计模板通用
时间:2022-09-16 11:01:08     小编:HLL

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

分数的意义教学设计内容篇1

教学目标:

1.在说一说、分一分、画一画等活动中体会单位 1的含义,理解分数的意义,学会用分数描述生活中的事情。

2.在具体的生活情境中感悟把一个整体平均分成若干份,这样的一份或几份可以用分数表示这一过程,培养学生动手操作能力和抽象概括能力。

3.在学习活动中感受数学与生活的密切联系,体验数学的价值,获得成功、兴趣、愉悦的情感体验,激发学生对数学的兴趣。

教学重点:

理解分数的意义

教学难点:

理解把许多物体组成的一个整体看作单位1。

教学方法:

自主探究、 合作交流教具多媒体课件

教学过程:

一、回顾旧知,导入新课。

谈话:前面我们已经学习了分数的初步认识,对于分数你已经知道哪些知识?举例说出分数的各部分名称,联系实际说出分数表示的意义。

谈话:对于分数还想了解的知识,进而导入新课。

二、合作探究,构建新知

(一)初步感知。

出示情境图1船模试航。

教师谈话:同学们,请你仔细观察这幅图,从图中你能发现哪些数学

信息?提出什么数学问题?

教师引导学生提出:5只航模平均分给5个同学,每个同学分得的航模数占总数的几分之几?

学生以小组为单位,利用画有5只船模的题卡分一分,学生先独立思考,再在小组内交流自己的想法,最后在全班进行交流。找到解决问题的方法。学生分组活动时,教师参与到学生的小组学习。然后在全班进行交流。全班交流时,教师适时引领:把5只船模看作一个整体,平均分成5份,1份占这个整体的1/5。

在学习1/5的基础上,老师可以继续引导学生提出问题:如两个同学分得的航模数占总数的几分之几,3个同学呢?

(二)深入探究

出示情境图2航模放飞

谈话:同学们,航模要放飞了,我们一起去看看吧。请你观察这幅图,根据图中的这些信息,你又能提出哪些与分数有关的问题?

学生提出问题,教师适时梳理。

如:一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

学生利用手中的学具摆一摆、分一分,分别解决一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

解决第一个问题:学生分组学习,教师要参与学生的小组活动中。

全班交流时,学生先利用4个飞机模型动手摆一摆,可能会出现1/2、2/4两个答案。然后全班进行交流、辩析、补充,得出结论。教师适时引领:每份是2架飞机,为什么说是占这个整体的1/2呢?

通过摆模型得到第一问题的结论:把4架飞机看作一个整体,平均分成2份,每份占这个整体的1/2。

课件演示将4架飞机平均分的过程,并板书结论。

解决第二个问题:先让学生交流自己的答案;再组织学生动手操作验证,并参与学生的学习活动;全班交流时,适时点拨:每份是2架飞机,为什么占总数的1/3呢?。从而引导学生得出结论。

(三)观察比较

谈话:请同学们观察我们所得到的 分数,你还有什么疑问吗?

引导学生质疑:两个小队每组放飞的都是2架飞机,为什么表示出来的分数却不一样呢?

学生进行观察比较,同桌讨论,全班交流得到结论。

通过对两个小队飞机放飞情况的比较,得到:将一个整体平均分成的份数不一样,表示出来的分数也不一样。所以同样是2架飞机,表示出的分数一个是1/2,一个是1/3。

(四)拓展应用

谈话:想一想,还可以把什么看作一个整体?可以利用老师提供的材料,也可以自己找材料,动手分分看,你能得到哪些分数?是怎样得到的?

学生动手操作,可以利用教师提供的材料(1张长方形纸片、8根小棒、长1米的绳子),也可以自己找材料,得到不同的分数。

交流:你利用什么材料,得到一个什么分数,你是怎样得到的?

总结:把一个整体平均分成若干份,这样的一份或几份可以用分数来表示。

(五)总结概括

谈话:一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,通常把它叫做单位1。

举例:学生举例还可以把哪些量看作单位1?并区分单位1与自然数1的不同。

结合操作过程,讨论、交流、总结分数的意义。引导学生总结概括分数的意义。把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

(六)看书质疑。

学生阅读6769页,质疑问难。教师巡视,解答学生困惑、疑难问题。

三、巧设练习,深化理解

1、自主练习1、2

2、涂色部分能用分数表示吗?(课件出示)

3、游戏:取糖果。学生按要求取糖果:盒子里有11块糖,取出总数的2/11;取出剩下的1/9;再取出剩下的1/4;如果取出2块,是取出了剩下的几分之几?

独立完成,进行交流。

教学反思:

创设生动有趣的现实学习情境。通过一些现实的生活情境,引导学生主动参与思考、合作、交流、反思等活动。使学生感受到数学来源于生活,运用数学可以解决生活中的问题,进一步体验数学与现实生活的密切联系。

分数的意义教学设计内容篇2

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,理解单位“1”知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力。

教学重点:

理解和掌握分数的意义,理解单位“1”的含义。

教学难点:

对单位“1”的理解。

教具和学具:

米尺、长方形白纸、圆形纸片、一米长的绳子、操作练习纸。

教学过程:

一、创设情景,温故引新。

1、出示1/4

师:认识吗?关于1/4你都知道些什么?

生:把一个物体平均分成4份,取其中的1份就用1/4表示。

生:4是分母,1是分子

生:它是一个分数。

师:同学们说的很好,那你们知道分数是怎样产生的吗?

二、教学分数的产生。

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师讲解古人测量的情况)。

3、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平均分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

4、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示—这就产生了分数。(板书:分数的产生)

三、教学分数的意义。

1、动手操作,探索新知。

(1)操作。

师:看来同学们对分数已经有了一些初步的了解,课前老师给每一个小组都提供了四种材料,一张正方形纸、1分米长的线段、4个苹果、8只熊猫。

下面以小组为单位,根据这几种材料,通过折一折、画一画、分一分等方法,表示出1/4 学生动手操作,教师巡视。

(2)交流

师:老师看到每个小组都根据这几种材料表示出了1/4谁愿意来展示一下?

让学生在实物投影仪前向大家展示自己的操作方法及成果

生:把一个正方形平均分成4份取其中的一份就是这个正方形的。

把1分米长的线段平均分成4份取其中的一份就是这条线段的。

把4个苹果平均分成4份取其中的一份就是这些苹果的。 把8只熊猫平均分成4份取其中的一份就是这8只熊猫的。

(3)认识单位“1”。

师:同学们,我们利用那么多方式表示出来了1/4,那请大家回忆一下,在表示的过程中,有没有相同的地方?

生:都是把物体平均分成4份,表示其中的一份,就是1/4

(师板书:平均分成4份,表示其中的一份就是1/4)

师:在表示的过程中,有什么不同的地方吗?

生:分的东西不一样。

师:我们刚才是把哪些东西平均分的?

生:一张正方形纸、1分米长的线段、4个苹果、8只熊猫

师:象把一个正方形平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一分米长的线段平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把4个苹果、8只熊猫平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师:同学们请看,象这样的一个物体、一个计量单位、一些物体都可以看作一个整体,这个整体我们可以用自然数“1”来表示,通常把它叫做单位“1”,(因为它可以表示一个整体,而不是一个具体的数,和自然数1不同,所以要加引号)

师:单位“1”到底指哪些?

生:一个物体,一个计量单位,一些物体。

师:很好,那么一个物体除了一个正方形外,还可以是什么?

生:一个苹果,一个面包......

师:一个计量单位还可以是什么?

生:__

师:一些物体还可以是什么?

生:3只老虎、4个面包、8个人......

单位“1”很奇妙,它可以表示我们班的一个同学,也可以表示全校同学,还可以……。它可以表示很大很大,大到宇宙万物;也可以表示很小很小,小到一粒微尘。

(4)、揭示分数的概念

1、师:一个物体,一个计量单位,一些物体可以用单位“1”表示,那么刚才在表示1/4的时候,我们实际上是把谁平均分成4份,表示其中的一份。

生:把单位“1” 平均分成4份,表示其中的一份,用1/4表示。

师:剩下的部分,用哪个数表示呢?

生:3/4

师:3/4表示什么呢?

生:把单位“1” 平均分成4份,表示其中的3份,用3/4表示.师:如果老师把单位“1”平均分成12份,表示其中的7份,用哪个分数表示?

生:7/12

师:像这样的分数,你还能说出来吗?

学生说:2/63/5…..并说出表示什么?

师:刚才我们说了那么多分数,那么到底什么是分数,你能用一句话概括一下吗?

小组交流。

指名说(多找几个学生说)。

揭示概念(板书:把单位“1”平均分成若干份,表示这样的一份或几份都可以用分数来表示。)

5、强化理解概念

①、齐读概念

②谁能说说下面分数的含义?(课件出示练习)

6、理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们观察这些分数的分母,有的是4、有的是12、有的是6等,分母表示什么呢?

生:分母表示把单位“1”平均分的份数。

师:分子表示什么?(分子,表示取的份数)

四、教学分数单位。

师:整数中有计数单位个、

十、百、千、万,分数是否也有计数单位呢?它的计数单位又是怎样规定的?请同学们打开课本自学。

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,请任意说出一个分数考考你的同桌,说出这个分数的意义和分数单位。)

五、巩固练习、深化提高。

1、师:刚才同学们积极动脑,认真思考,学习了分数的有关知识。下面我们一起做个小游戏,看谁最善于动脑思考。老师手中有九个糖果,现在我要把这些糖果分给我们班的同学,谁想要?有要求:我说分数,你来拿糖,说对了才能把糖果拿走,谁想来?(学生上台拿,并及时鼓励)

师:请拿走这些糖果的三分之一,说一说你是怎样拿的?她拿的对不对?还剩几颗?(六颗),再请一个同学,请你拿走剩下糖果的三分之一,(两颗),咦,为什么都是三分之一 ,而俩人拿的糖果不一样多呢?(生:因为总数不一样。)

师:虽然取的份数相同,但单位“1”不同,得到的数量也不相同。

师:还剩4颗,谁还想要?请你拿走二分之一,她拿走了几颗?(2颗),为什么他拿走的是三分之一,而他拿走的是二分之一,却都是2颗呢?(生:单位“1”不同)师:也就是说单位“1”不同,分成的份数不同,得到的数量也可能是相同的。

师:最后还剩下2颗,老师这里不仅仅只有两颗,还有很多,老师要请同学们来猜一猜,这两颗糖果是老师现在所有糖果的九分之一,请问,老师现在一共有多少颗糖果?

师:同学们玩完了这个游戏,是不是轻松多了,下面老师要考考你们了,有没有信心全部通过?出示题目。

2、练习十一的第1、2、3、4题

六、课堂总结。

今天这节课我们学习了什么?你有哪些收获?

分数的意义教学设计内容篇3

教学目标:使学生结合具体情境进一步认识分数,知道把一些物体看成一个整体平均分成若干份,每份可以用几分之一来表示,能用自己的语言来描述分数的含义,对分数有进一步的认识,也就是部分与整体之间的一种关系。

教学难点:

1、整体方面:是在学生原有的一个物体或一个图形的基础上突破到由一些物体组成的一个整体。

2、部分:平均分成的每一份由原来的一个突破到由几个组成一份。

教学过程

一、学习1/4

1、情境导入,复习1/4

教师:小朋友,猴山上有4只小猴子,玩得可开心了,正当他们满头大汗的时候,猴妈妈给他们带来了一些水果,我们一起来看看有些什么呢?(一个大西瓜,一个神秘的口袋)看着满头大汗的猴宝宝,猴妈妈赶紧给他们分西瓜,猴妈妈把这个大西瓜平均分成了4份(课件演示西瓜平均分成4份的图),你知道为什么要平均分成4份吗?

学生:因为有4只猴子,所以平均分成4份。

教师:每个小猴可以得到一份西瓜,你知道这一份西瓜是整个西瓜的几分之几呢?(指一块)

学生:1/4。(电脑出示一个1/4)

教师:你是怎么想的?

学生:因为把一个西瓜平均分成4份,每个小猴子得到一份,这一份就是这个西瓜的1/4。

教师:那这一份呢?这一份,还有这一份呢?(对,每一份都是这个西瓜的1/4)

教师:我们已经知道了把一个物体平均分成4份,每一份就是这个物体的1/4。(教师结合自己的口述,及时进行板书)

2、教学例题

教师:西瓜吃完了,可猴宝宝们还觉得不解渴,这时他们想到了猴妈妈带来的神秘口袋,(电脑回放)其实这个神秘口袋中装的也是小猴子喜欢的水果,猜是什么?

学生:桃子。

教师:猴妈妈肯定会把这些桃子怎么分?

学生:平均分成4份。

教师:对,因为有4只猴宝宝,猴妈妈肯定会和西瓜一样平均分成4份。

教师:每只猴宝宝可以分到一份桃子,那这一份桃子是这袋桃子的几分之几呢?

学生:1/4

教师:你能把自己的想法和同桌小朋友说说吗?

学生交流,再评讲。

学生:因为把一袋桃子平均分成4份,每个小猴子分到1份,所以用1/4表示。

教师:谁还愿意把自己的想法说给小朋友们听?

再请学生说说想法。

教师:看来,这个神秘口袋还没有打开,我们已经知道了每个小猴子可以分到这袋桃子的1/4了。是吗,这是为什么呢?

学生:因为把一袋桃子平均分成4份,每份就是这袋桃子的1/4。)

教师:那每个小猴子分到的一份到底是几个桃子呢?老师告诉你们,这个神秘的口袋就在你们身边,请同桌两个小朋友打开平均分一分,数一数。

教师;谁能说一说每个小猴子到底分到了几个?

教师:为什么你这里的一份和他那里的一份不同呢?

学生按4个、8个分别说说自己每一份的个数。(板书2个,4个)

学生汇报,结果不同,为什么?自己去寻找原因。交流怎么回事。

教师:那你这里的一份和他那里的一份为什么都可以表示各自这袋桃子的1/4呢?

学生:因为他们都是平均分成4份,每份就是这袋桃子的1/4。

教师:不管桃子的总数是多少,只要根据桃子平均分成了4份,就知道每份就是这些桃子的1/4。而到底这一份有几个,我们就得看看总数有多少才能确定。

二、认识其它的分数

1、想一想

教师:现在请你们再想一想,如果猴妈妈带来的这袋桃子(4只),平均分给两只小猴子吃,那每个小猴子可以分到这袋桃子的几分之几?

教师:请学生说说自己是怎么想的?

教师:每一份是几个呢?

学生:2个。

教师:现在请你们再想一想,如果猴妈妈带来的这袋桃子(8只),平均分给两只小猴子吃,那每个小猴子可以分到这袋桃子的几分之几?

教师:请学生说说自己是怎么想的?

教师:每一份是几个呢?

学生:4个。

教师:不管1只小猴子最后拿到的是这里的2个还是这里的4个,他们拿到的都是这袋桃子的1/2。你知道为什么吗?

学生:因为桃子平均分成了2份,每个小猴子拿到了一份,所以都是总数的1/2。

三、闯关游戏

教师:刚才的学习,老师发现三(5)班的小朋友特别聪明,猴宝宝给大家带来了一个闯观游戏,不知道你们有没有信心完成这个游戏。

1、第一关:(想想做做1、2)

教师:你看懂题目的意思了吗?谁能说说?

学生:根据图,填出分数

教师:要填写分数,我们必须看清什么?

学生:这些物体被平均分成了几份。

学生完成,然后集体交流,说说自己的想法。

2、第二关:(想想做做3)

教师:第二关就是书上想想做做第3题,请大家读一读题目的要求。

教师:谁能说说怎么做才能让其他小朋友们一看就明白了你表示的分数。

学生:先根据分数平均分一分,然后再用涂色表示。

学生完成后交流。对于1/5和1/2可以有不同的表示方法。

3、第三关:(想想做做4)

教师:第3关,要求同桌小朋友合作完成,同桌两个小朋友都有12根小棒,请你们拿出这12根小棒的1/2,谁能说说你们是怎么拿的?(学生可能会用除法,可以。)

教师;还有什么方法?

学生:把小棒平均分成2份,拿1份。

教师:现在请你们再拿出这些小棒的1/3,是多少?对的举手。

教师:你们知道还可以拿出这些小棒的几分之一吗?

学生:1/4,1/6,1/12。

教师:请学生拿出小棒的1/6,看看是几根。

4、闯关结束

教师:看来我们三(5)班的小朋友真的很厉害,轻轻松松过关了,看看猴宝宝都为大家高兴呢!

四、总结

教师:今天我们学习了分数,你有什么收获或有什么想法?告诉大家好吗?

教师:请几个学生说。

分数的意义教学设计内容篇4

教学目标:

知识与技能:理解分数乘分数的意义,掌握分数乘分数的计算法则。

过程与方法:经历解决问题和计算的过程,体验归纳推理的学习方法。

情感态度与价值观:感受数学与生活之间的联系,激发学生学习数学的兴趣,养成勤于思考的良好习惯。

教学重点:

掌握分数乘分数的计算法则。

突破方法:

引导学生分析,解决实际问题,组织学生合作探究,讨论归纳计算法则。

教学难点:

推导算理,总结法则。

教法与学法:

教法:情境教学

学法:小组合作,学习交流。

教学过程:

一、情境引入:

1、小明请小强到家里做客,请小强吃西瓜,先切了一半留给自己的父母,两人吃的各占了西瓜一半的一半,问小明吃了整个西瓜的几分之几?

师:该怎么列式

前面我们学习的是整数与分数与分数相乘,这题都是分数乘分数,你能写出这样的算式吗?

设计意图:创设情境,激发学生求知欲望。

2、观察这些算式,认为哪一些算式算起来会容易些?

二、探索算法:

(一)几分之一乘几分之一

1、请学生选择几道几分之一乘几分之一乘法算式,尝试计算。

2、汇报计算情况,提出计算方法。

3、举例说明或验证计算方法及结果。

4、小组内交流验证计算方法及结果。

5、组际交流。

6、小结几分之一和几分之一相乘的计算方法:分子相乘的积作积的分子,分母相乘的积作积的分母。

(二)一般分数相乘

1、小组合作探究:

(1)猜想一般分数相乘的计算方法。

(2)请举例验证。

(3)准备汇报。

2、组际交流

3、总结分数乘分数的计算法则。分数乘分数:分子相乘的积作积分子,分母相乘的积作的分母。

4、沟通所有分数乘法的计算方法。以前还学过哪些关于分数的乘法?他们有什么共同点?

1.学生独立写出几个算式。汇总到黑板上。

2.学生观察得出:几分之一和几分之一相乘。

3.举例说明或验证计算方法及结果。

4.小组交流个体学习情况

5、组际交流可能出现的方法:

(1)把分数化成小数计算

(2)根据分数乘法的意义

6、学生按要求活动。

7、组际交流:学生可能出现的情况

(1)可以看作是——

(2)画图:把长方形的纸先用阴影表示出,再表示阴影部分的,然后打开看一看得到的阴影是整个长方形的几分之几。

(3)化成小数计算。(能化成小数的)

三、教师辅导

1、教师进行个别辅导,并了解学生的计算及验证情况。

2、教师指导和参与讨论。

四、反馈提高,巩固计算

出示例4,读题。

师:怎样列式?依据什么列式?

由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

学生独立完成“做一做”。

附:教学设计说明

《分数乘分数》一课是河北省九年义务教育教材小学数学第十一册第二单元的内容,是在学习了分数整数、整数乘分数,理解了分数乘法的意义后进行学习的。分数乘法在掌握了法则以后,计算并不复杂,因此在本节课中我们力图体现“让学生自己提出、验证计算方法,培养探究问题能力,体现算法多样化”的总体思路。

一、充分开放教学过程,促进学生主动参与

整节课设计为三个阶段,每个阶段都提供了学生充分参与的机会。引入阶段,在情景的支持下让学生自己提出并确定学习、研究的材料;展开阶段,分两个层次让学生提出“分数乘分数”的计算方法,并通过独立思考、合作研究来展示、证明自己的计算方法,使研究过程体现开放与自主,努力营造个性化的学习方式,以促进各个层次学生的交流与发展。

二、充分展示知识的发生、发展与联系,使学生经历学习过程

《分数乘分数》一课,从情景入手,把较复杂的“分数乘分数”的计算方法,设计成用学生自己创造的方法来展示和验证,有利于学生更好地获得和理解计算方法。课堂的“展开”阶段,从解决“几分之一与几分之一相乘”到“两个一般分数相乘”,力图体现由浅入深、由易到难的探究过程。使学生在“探究算法——操作验证——交流评价——法则统整”等的一系列活动中经历“分数乘分数”计算法则的形成过程,感受知识间的内在联系,同时渗透数学研究的思想方法,培养学生探索问题的能力。

三、以数学知识为载体,体现《课程标准》精神,促进学生探索

本节课的设计力图以“分数乘分数”这一数学知识为载体,通过学生主动参与、发现问题、解决问题的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革的精神。教学大纲上明确指出:“小学数学教学要使学生既长知识又长智慧,要遵循学生的认识规律,重视学生获取知识的思维过程。”通过学生自己动手研究,推导“分数乘分数”的计算方法,并进行展示交流。呈现多样化的算法,能较好地使学生感受到学习的成功和研究的乐趣,即使学生在理解掌握方法的现时提高解决问题的能力,又利于学生形成良好的数学情感与价值观。

分数的意义教学设计内容篇5

创境激疑

(一)导入

1.复习:什么叫分数?

2.用分数表示出下面各图的涂色部分。(出示教具)请学生分别说出每个分数的意义。

合作探究

(二)教学实施

1.提问:比较上面三个分数的分子与分母的大小?

这些分数比1大还是比1小?并说明理由。

2.学生观察后,试着回答。

学生:(第一个圆)平均分成了3份,这样的3份也

是一个整圆,表示1,而涂色部分只有1份,所以比l小。再请学生分别说出另外两个分数。

3.老师指出:像上面的3个分数都是真分数。我们过去接触过的分数,大都是真分数。那么,你能说说什么叫真分数吗?

4.让学生独立思考后,与同桌交流一下,再指名回答。

5.小结:分子比分母小的分数叫做真分数。真分数小于1。

6.老师再出示例2中图形的教具。

7.请学生分别用分数表示每组图形中的阴影部分。

提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?

老师强调:第二组图和第三组图中每个圆都表示“1”。

拓展应用

1.在分数a/b中,当a小于时,它是真分数;当a大于或等于时,它是假分数。

2.在分数b/a中,当a小于或等于时,它是假分数;当a大于时,它是真分数。

3.分数单位是的最小真分数是,最小假分数是。

4.写出两个大于的真分数和。

总结

通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分母相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。

作业布置

教材54页做一做

板书设计

教学札记

分数的意义教学设计内容篇6

教学内容:

教材第27页的例1和第28页的练一练,完成练习五第1~3题。

教学目标:

1.使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。

2.在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。

3.在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:

掌握用转化的策略解决分数问题的方法。

教学难点:

根据具体问题,确定转化后要实现的目标和转化的方法。

教学资源:

课件

教学过程:

一、回顾旧知,整理策略

谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的从条件向问题推理和从问题向条件推理,帮助理解题意的列表整理和画图整理,还有枚举转化假设与替换等策略)

提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)

二、合作探究,运用策略

1.教学例1(课件出示例1)

学生读题,自主完成。

谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)

小组交流方法。

汇报交流情况:(学生遇到困难可作适当的引导。)

①根据男生人数是女生的2/3理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。

②根据分数2/3的意义,可以推理出男生人数和女生人数的比是2∶3。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。

③根据分数2/3的意义,想到女生人数看作3份,男生人数是2份,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。

④把作为单位1的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。

谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)

刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)

2.做第28页的练一练

引导学生运用刚才学过的策略,用自己喜欢的方法来解决。

要求学生说说你选择了什么策略,是怎样想的(通过他们在交流中获得这些体验,让学生体会方法的多样性。)

三、巩固练习,回顾策

1.练习五第1题。

要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。)

2.练习五第2题。

根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。)

四、课堂小结,提升策略

谈话:通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到化繁为简的作用,帮助我们更好的解决问题。

五、课堂作业

练习五第3题。

分数的意义教学设计内容篇7

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试

同学之间交流想法:++==3__3=

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=

二、自主探索

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)

方法2:×3=++====(块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的

区别:一种方法是加法,另一种方法是乘法

教师板书:++=×3

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变

(五)提示:为计算方便,能约分的要先约分,然后再乘

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1.改写算式

+++=()×()

+++++++=()×()

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1.计算(说一说怎样算)

×4×6×21×4×8

思考:为什么先约分再相乘比较简便?

2.应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)对比练习

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)

用乘法算:×3=++====(块)

答:3人一共吃了块

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算

教学设计点评

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

 

【分数的性质和意义教学设计模板通用】相关推荐文章:

2022年分数的初步认识教学设计一等奖

A1 技术支持的学情分析作业1—学情分析方案(《分数的基本性质》)

2022年分数的认识教学设计详案优质范文

乘法分配律全国一等奖教案 分数乘法教学设计一等奖6篇

小学语文教学设计模板 小学语文教学设计模板及案例5篇

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服