范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数的意义教学设计 分数的意义教学设计及设计意图篇一
常州,历史悠久,人文荟萃,绿树芳草,将我们的家乡装点得秀丽多姿,近几年市政府投入更多资金,要把常州建设为美丽的园林城市。消息一传出,许多植树公司纷纷表示愿意承担此项工程。
提问:你觉得市政府在选择公司时会考虑哪些因素呢?
学生回答:如实力、服务质量、完成工期、诚信度、公司规模等。
1、初读信息,形成认知矛盾
经过调查,市政府发现有三家公司在资金、工期、诚信度等方面的条件旗鼓相当,所以派人去他们以前的工程现场进行了实施调查,采集回了以下信息:
(课件呈现)
甲公司负责的1号路段中,现在成活树苗有24棵。
乙公司负责的2号路段中,现在成活树苗有19棵。
丙公司负责的3号路段中,现在成活树苗有47棵。
看着这组信息,你会选择哪个植树公司呢?让学生展开讨论。
引出:只了解成活的棵树这一个数量还不行,还需要知道树苗的总棵树是多少。(板书:成活棵树 总棵树)
2、查阅资料,同学们需要的数据找到了。
甲公司负责的1号路段中,共种树苗25棵,现在成活树苗有24棵。
乙公司负责的2号路段中,共种树苗20棵,现在成活树苗有19棵。
丙公司负责的3号路段中,共种树苗50棵,现在成活树苗有47棵。
提问:现在,你会建议市政府选择哪个公司呢?(小组讨论,并请一个代言人作好发言准备)交流发布。
板书:成活棵树是总棵数的几分之几?怎样比较可以快一些?(通分)
现在同学们很快可以做出判段选哪个公司比较好。黑板上改一下,成活棵树是总棵数的百分之几?引出:百分数
%→这个符号叫百分号。
甲:24÷25=24/25=96/100=96%
乙:19÷20=19/20=95/100=95%
丙:47÷50=47/50=94/100=94%
我们还可以写成这样:96%让学生上黑板写下面两个,其余同学写在自己的本子上。
提问:谁能用自己的话来说说96%95%94%表示什么意思?
交流信息,进一步体会百分数在生活中的应用。学生小组交流一下收集到的信息。进一步体会百分数的意义。
3、小结归纳
了解这么多的百分数,你能用自己的话说说什么叫做百分数?
①阅读课本:你还有什么疑问吗?
百分数与分数有什么不同?
(形式、意义、作用、书写方法都存在不同的地方)
1、下面哪几个分数可以写成百分数,哪几个不能?
(1)一堆煤97/100吨,运走它的75/100
(2)23/100米相当于46/100米的50/100
小结:数量不能写成百分数,分率可以写成百分数。
2、(课件呈现)
出示肯得基图片,你爱吃吗?猜一猜我们班爱吃人占全班的百分之几,看一段小资料,说说你的想法。引出洋快餐营业额比中式快餐多了百分之几?
(课件呈现)
2004年雅典奥运会,中国健儿取得了32枚金牌的优异成绩,夺
得令全世界瞩目的成绩。人们纷纷认为2008年北京奥运会将是中国体育健儿再创辉煌的时刻。中国奥委会在北京投入了1800亿进行城市基础设施建设,包括进行快速交通网络、环境整治、生活设施改造与信息化建设。各项投资比例如图:
游戏:石头、剪刀、布让学生收集信息,计算百分数。
这节课快结束了,老师对同学们的表现是100%的满意,老师想了解一下你的学习情绪如何?特别是愉快、紧张和遗憾这三种情绪。你能用百分数来告诉大家这节课的各部分学习情绪所占的比率吗?
愉快()%
紧张()%
遗憾()%
学了今天这节课,你想用百分数干些什么?
分数的意义教学设计 分数的意义教学设计及设计意图篇二
小学数学教学的主要任务之一是使学生掌握一定的数学基础知识。而概念是数学基础知识中最基础的知识,对它的理解和掌握,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力和对学习数学的兴趣。新课标指出,我们要让学生经历观察、实验、猜想、证明等数学活动,发展推理能力和初步的演绎推理能力。学习数学知识的过程就是一个不断地运用已有的数学概念进行比较、分析、综合、概括、判断、推理的思维过程。要掌握正确、清晰、完整的数学概念,既依赖于学生的数学认知状况,又依赖于教师的教学措施。只有加强概念教学,才能使学生在获取数学知识的同时,进一步培养各种数学能力。
本课为学生创设了丰富的学习活动,把整个学习过程放给了学生,让学生小全员参与,共同探究。围绕核心概念进行教学,使学生加深对分数意义的理解。在概念的引入和形成的过程中充分发挥了学生的主体作用,为他们提供了自主学习的空间,
知识基础:学生在二年级时学习了平均分,对于平均分及除法已经深刻理解并掌握。在三年级上的时候,学生初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的大小,会加减简单的同分母分数。
《分数的意义》为人教版义务教育课程标准实验教材第十册第四单元《分数的意义和性质》中的第一小节60-62页分数的产生 分数的意义,属于数与代数的领域。这个单元包括六个内容。
本单元是学生系统学习分数的开始。本节教材由分数的产生、分数的意义、分数与除法的关系三段,即三个层次的内容组成。通过这三个层次的教学,能使学生比较完整地建立起分数的概念。
本节课是这部分知识的起始课。要引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整的从分数的产生,从份数与除法
的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数的互化的技能。对于小学生而言,分数比较抽象,目前学生在实际生活中遇到分数也不多,因此理解和掌握是比较困难的。教材的编排比以往更重视用直观的手段帮助学生体会、理解有关知识。
这些知识在后面系统学习分数四则运算及其应用题时都要用到,因此,学好本单元内容,尤其是理解分数的意义是顺利掌握分数四则运算并学会应用分数只是解决一系列实际问题的必要基础。
既然学生在三年级就已经认识了分数,那么到了五年级,他们对于分数究竟还知道些什么?这节课的起点应该在哪儿?带着这个问题我对学生进行了一项前测:
要求:一个分数 ,用你喜欢的方式说明它的含义(画图、文字叙述等等)。 情况如下:
结果大部分学生选择了画图的方式,用一个实物,如一个苹果,一块面包或者是用一个图形,如长方形、正方形,个别1个孩子选择了线段图。事实证明学生掌握了把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份。
通过以上分析,孩子对于分数的认识已经有了一定的基础,能够准确地描述把一个物体进行平均分得到一个分数。那么本节课的教学中应注意些什么呢?这引起了我的思考。思考一:为了比较完整的建立起分数的概念,应该利用三年级对分数的初步认识为基础,提供平台,让学生在合作探索中主动获取知识;思考二:要找到把许多物体组成一个整体平均分与把一个物体平均之间的内在联系,抽象概括出分数的意义,并强调单位“1”的概念,揭示分数表示部分与整体的关系。 思考三:另外根据五年级的学生的心理特点,正处于形象思维向抽象思维的过渡阶段,并且仍以具体形象思维为主,所以既要对学生的形象思维给予支持,也要
为学生的抽象思维提供可以发展的空间。学生只有在现实的情境中体验,并且去操作,去实践才能更好地理解和掌握这一内容,真正理解分数的意义这一抽象概念。
依据《数学课程标准》对高学段的要求及教材特点和学生实际,我特制定以下教学目标:
1.通过动手实践,使学生体会单位“1”的 含义,理解分数的意义,体会分子、分母及分数单位的含义。
2.在分析、比较、辨析等活动中,培养学生的观察、抽象、概括能力。
3.在积极主动参与实践活动的过程中,使学生能够辩证地认识部分与整体的关系。
教学重点:理解分数的意义
教学难点:单位“1”的理解
教 学 方 式: 体验、探究式学习
教学手段说明:以大量学具为载体,引导学生想一想,动手画一画,分一分,亲身体验,合作交流,引导学生在动手实践的基础上积累感性材料,帮助学生理解分数的意义。
说流程:
见课件
说教学过程:
第一大环节:本课的开始通过分一个月饼,产生引出在分物或测量时,在分物或测量时,往往不能正好得到整数的结果,这时常用分数来表示。
设计意图是:
第二大环节:
第一层: 回顾旧知:教师为学生准备学具,一个苹果、一个月饼、一个正方形、一条线段,表示四分之一,并说明自己所分图形表示的含义。
观察我们刚才分的这些物体,它们有什么共同的特点?(分的都是一个物体)最后引出小结:我们把一个物体平均分成了若干份,表示这样的一份或几份的数可
以用分数来表示。
设计理念:引领学生感受分数的产生,通过分一个物体,调动学生已有的知识 经验,让学生初步感受分数的含义。数学来源于生活,应用于生活。课伊始,在轻松的聊天环境中,引入分数,勾起学生对分数已有知识的回忆。在接下来的一系列学习中,引导学生理解可以把什么平均分,“在生活中”还可以把什么看做单位“1”。通过学生熟悉的事物,将抽象的分数具体化。
第二层:把一些物体看作一个整体,扩展单位“1”
1、 通过分一些物体4块月饼,8块月饼,20块月饼,一大堆月饼的四分之一,
让学生观察,教师小结:一个物体、一些物体等都可以看做一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
设计意图:数量逐步递进的月饼的设计就是对于单位“1”扩展的一个考虑,学生感到自然,易于接受单位“1”的概念,
2、 同时让学生观察都是四分之一,有什么相同和 不同之处?
设计意图:学生能够逐步体会到用分数来表示部分与整体的关系。
3、 让学生列举生活中的单位“1 ”
设计意图:扩展对单位“1”的认识,能把一些物体看成一个整体进行平均分。感知分数与平均分什么物体及物体的数量无关。
第三层 :动手操作分6个月饼,体验分数得到的过程,丰富对分数的认识
通过把六块月饼平均分成2份、3份、6份让学生充分的动手分月饼,表示每种分发用分数表示,并得出每种分法相对应的数量,从而让学生充分的自主学习探究,教师监控:为什么同样是平均分、同样是一份但是分得的结果却不同呢? 小结:同样是把6个月饼看成一个整体,可以平均分成二份,也可以平均分成三份,还可以平均分成六份,有不同的分法,平均分的份数不同,得到的每一份也就不同。
设计理念:《课标》中指出:教师的教学应该以学生的认知水平和已有的经验为基础,面向全体学生。因此本节课从传统的书本知识向学生的生活数学开放,把学生的个体知识,直接经验看成重要的课程资源,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学知识,并鼓励学生独立思考,从已有的知识经验入手,努力探索新知,让预设的教学目标在实施过程中开放的纳入到学生
的直接体验中体会单位“1”相同,分的份数不同,得到的分数也不同。在此环节中学生自己动手去分一分,兴趣高涨,真正的参与到学习的过程中,成为学习的主人。通过演示操作、观察比较,由具体感知到形成表象,再逐步抽象概括出分数的意义,由感性认识上升到理性认识,让学生参与知识获得的全过程。 第四层:概括分数的意义
1、让学生观察这些分数都是怎样得到的?
预设:把单位“1”平均分成几份,表示这样的一份或几份的数,可以用分数来表示。(学生边说教师边板书)监控:若干份指的是什么?(分母)表示这样的一份或几份是什么?(分子)
小结:我们在把一个物体平均分的'基础上,今天又知道了可以把多个物体看成一个整体进行平均分,进一步认识了分数(板书:分数的意义)。
设计意图:通过学生真正的参与活动,让学生经历数学知识的形成过程,在学生的动手实践活动中,潜移默化的拓展对分数的认识。
第五层 揭示分数单位
让学生观察黑板上的这些分数(指着二分之一、四分之一、三分之一??)有什么共同的特点?
预设:分子都是1,表示把单位“1”平均分成若干份,其中的一份。
得出:像这样表示一份的数,我们把它叫做分数单位。(板书:分数单位) 第三大环节:分层练习,深化提高:
练习1,的设计意图:借助直观展开练习,发散学生的思维,巩固分数的意义。选择不同的单位1
练习2,三个猜一猜的练习更加深学生对于分数量、率对应关系的理解,加深对分数意义的理解,为分数应用题做好铺垫。
练习3,是一道开放题,拓展学生思维,数学课是思维的体操,让学生充分动脑。培养学生全面思考问题的意识。
本课的设计特点:
1、能抓住学生的认知起点进行教学。
布鲁姆说过:对教学影响最大的是学生已有的知识。对一个五年级学生来说,“分数”的知识决不是一张白纸。在教学中,教师充分尊重学生的认知基础,准
分数的意义教学设计 分数的意义教学设计及设计意图篇三
1、进一步认识分数,理解分数的意义。
2、认识分数单位,感受到单位的价值。
3、体会到数学好玩,进一步喜欢数学。
师:这儿有一个关于分数的问题,一起来看看,说是猪八戒吃西瓜,他把一个西瓜平均分成4份,吃了3份,怎么用分数表示猪八戒吃的西瓜?
生:
师:能说说是怎么想的吗?
生:平均分成4份,取其中的3份就是
师:那么,还有这样一个问题:孙悟空拔出一根毫毛,变成6只猴子,3只公的,3只母的,你想到了什么分数?
生:
师:说说怎么想的?这个分数表示什么?
生:表示公猴或母猴占猴子总数的六分之三
师:还想到了什么分数?
生:
师:说说是怎么想的。
……
(一)、大头儿子的难题----引出单位
(课件播放动画片:小头爸爸出去买沙发套,到了商店发现忘了测量沙发的长度,于是打电话让大头儿子测量一下,可是家中没有尺子)
师:这可怎么办?你有什么好办法吗?
生:可以找个东西代替尺子测量。
师:一起来看看大头儿子是怎么解决的。
(课件继续播放故事:大头儿子想起可以找个东西代替尺子测量,于是他问爸爸戴领带了没有,爸爸回答戴了,于是他从家中找出一条爸爸的领带进行测量,他先将领带对折,发现不行,再对折,还是不行,又对折了一次,折出这很后放在沙发前)
师:你知道大头儿子将领带平均分成了几份吗?
生:8份。
师:那你知道沙发的长度了吗?
生:知道。
师:请大家独立把答案写在作业本上。
(指名交流结果)
生:
师:为什么是?
生:大头儿子把领带平均分成了8份,一份就是,沙发的长度占其中的7份,也就是有7个,所以表示为
师:爸爸叫大头儿子测量沙发长度,为什么大头儿子首先想得到的是找尺子
生:因为尺子有单位,比较容易看出长度
师:那大头儿子没有尺子上的单位,又怎么测量出了沙发长度的呢?
生:将领带平均分成8份,就有了这个单位,然后数数有几个这样的单位就可以了。
师:原来分数就是这样产生的,今天我们就进一步来认识分数。
(板书课题)
师:分数的再认识究竟是认识什么?你对分数有哪些问题?
生1:分数是什么?
生2:为什么要认识分数?
生3:怎么确定一个分数?
师:现在我们就带着这些问题一起来认识分数。
师:大头儿子在测量沙发长度是产生了这个分数,那这个分数是怎么产生的?
生:先把领带平均分成8分,这样就有了八分之一这个分数单位,然后再数数有几个这样的单位就行了。
师:也就是说,首先要创造一个单位,这在测量中很重要,那么如果要量一个教室的长要用什么单位?
生:米。
师:量一枝铅笔的长用什么做单位?
生:厘米。
师:为什么你会做这样的选择?
生:因为测量较长的物体就会选择较大的长度单位,测量较短的物体就选择较短的单位
师:正是这样,不光是测量长度,测量面子、重量等都是这样的。也就是说不同的尺子就是单位不同。大头儿子用领带来测量沙发的长度,他创造了一把尺子,其实就是创造了一个新的单位。
师:一起来看一组分数,你知道他的单位吗?
(出示一组分数,指名说出分数单位,教室板书)
师:观察一下这些分数单位,你发现了什么?
生1:所有的分数单位分子都是1。
生2:分数单位与原分数比较,分母不变,分子都变成了1。
师:是的,像这样分子是1的分数又叫分数单位。你知道为什么大头儿子在测量沙发时要创造八分之一这个单位,而不是创造二分之一、四分之一这样的分数单位呢?
生1:因为只有创造八分之一这个单位才好数。
生2:如果是二分之一、四分之一这样的分数单位,就数不出有几个这样的整单位。
师:原来要根据实际情况来确定单位呀!
师:古埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数。埃及分数,曾经是一个被人瞧不起的,古老的课题,但它隐含着十分丰富的内容,许多新奇的迷等待着人们去揭开。
(二)、大臣们的难题-----规定单位
(课件演示动画过程,古代君臣一行几人正在花园中赏景,皇帝一时心血来潮,询问大臣们眼前的池塘中有几桶水,并限时回答否则重罚,这下可忙坏了大臣们,大家七手八脚的拿桶来测量,可怎么也搞不清楚,这时旁边的一个小孩哈哈大笑说:这么简单的问题还要这样大动干戈吗?我知道)
分数的意义教学设计 分数的意义教学设计及设计意图篇四
一、教学内容:人教版教材五年级下册第45、46页(新授课)
1、了解分数的产生,理解分数的意义。
2、理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。3、在理解分数含义的过程中,渗透比较、数形结合等数学思想方法,培养学生的抽象概括能力。
教学重点:理解分数的意义。
教学难点:理解单位“1”,认识分数单位。
教具:课件、彩色磁扣。
学具:圆片、正方形和长方形纸片,一板面包图片(分格的),4根香蕉图片,一段绳子
教法:创设情境法、操作发现法
学法:合作交流法、自主探究法
(一)情境引入(2分钟)
(二)探究新知(14分钟)
(三)探究求周长的策略(15分钟)
(5)量一量、算一算
a三角形、长方形等直边的测量方法。(3分钟)
师:那么要想知道封闭图形一周的长度是多少,该怎么办?
师:课前老师给每个小组准备一个学具袋,里面有一个封闭图形,下面四人小组想办法测量出它的周长,活动前请先阅读活动要求。
小组合作:
①小组内快速交流用什么方法测量。
②选择需要的工具进行测量。
③组内分工合作。(测量时取整厘米数)
反馈交流测量方法。
①三角形
6+8+10=24cm
师:那个小组愿意汇报?
预设:我们测量的是三角形,测量工具是直尺,测量的方法是量,测量的结果约为24厘米。
师:你们用直尺量出三角形三条边的长度,然后呢?(把三条边的长度加起来)那测量结果24厘米表示什么?
预设:三角形三条边的长度总和。
预设:三角形一周的长度。
师:三角形一周的长度就是它的周长,三角形的周长是它三条边的长度和。(课件出示)
②长方形
5+5+3+3=16cm
师:昨天咱们刚刚学习过四边形,哪组来汇报一下四边形?
预设:我们选择的图形是长方形,测量工具是直尺,测量的方法是量,测量的结果约为16厘米。
师:16厘米这个长度表示什么呢?
预设:表示长方形一周的长度,也就是长方形的周长。
师:他们也选用了用直尺测量,量了几条边(四条边),然后再把它们加起来。
师:有不同的意见吗?(长方形对边相等只需量两条边,一条长、一条宽)
师:真棒!你们能根据长方形的特征简化测量过程。
师:那如果想知道正方形的周长怎么做呢?
预设:量一条边,就知道四条边的长度了。
师:当然,不论量几条边,计算四边形的周长都是要把四条边的长度加起来?我们发现四边形的周长是它四条边的长度总和。
思考:如果是五边形,它的周长是几条边的长度总和?六边形呢?八边形呢?
交流后小结:看来多边形的周长就是它所有边的长度总和。
b爱心、树叶等不规则图形的测量方法。(8分钟)
③树叶
师:老师给有些小组准备了一片树叶。那个小组选择测量的是树叶的周长?1厘米大约是这么长,请同学们估估看这片树叶的周长大约是多少厘米?它的周长到底是多少呢?我们来听一听这个小组的汇报?
预设:先用绳子沿着边线围一圈,在绳上做一个标记,然后把绳子拉直再用直尺测量,测量的结果约是9厘米8毫米。
师:有不同的方法吗?
预设:直接用软尺绕一圈可以直接测量出树叶一周的长度。
师:太智慧了!为什么不用尺子直接量呢?
预设:因为边是弯弯曲曲的。
介绍滚动法:首先在树叶上作一个记号,然后在尺子上滚一圈,看滚到哪里,读出刻度也可以知道树叶的周长。滚动法也是把弯曲的边转化成直直的线段进行测量,也利用了化曲为直的方法。
④爱心
学生汇报:测量工具是绳子,测量的方法是围、量,测量过的结果约是12厘米
师:你们小组测量的是爱心。爱心的边也是弯曲的,说说你们用的什么方法测量的,为什么不用滚的方法?滚动法不能测量到凹陷的部分。
师:同学们,经过探究合作和展示,要想得出封闭图形的周长有哪些方法?
预设:直边的图形用尺子测量,曲边的图形用绳测法或者滚动法,化曲为直的方法
师小结:没错,直边先量边长后计算,曲边化曲为直
(6)揭示周长概念的本质
师:回顾之前的学习,经过了这么多学习的感受,现在你认为什么是周长?
预设:封闭图形一周的长度就是这个封闭图形的周长(完善板书)
师小结:看来同学们对于周长已经理解了。周长,周长,周指一周,即封闭图形的一周,长就是长度,封闭图形一周的长度就是它的周长。
【设计意图】操作是智力的源泉,思维的起点,在经历摸一摸、量一量、比划、估一估的过程中,让孩子充分的操作,积累丰富的体验感受,不但可以使他们在操作过程中提高动手能力,而且容易把感性认识提高到理性认识,把通过实际操作得出的结论延伸、并进行合理的想象,这在培养学生对长度的感觉和估的能力的同时,进一步感受“周长”和长度的关联,能够将面和线区分清楚,体会周长概念的本质。
(四)实践应用,拓展延伸(8分钟)
1、增加干扰,强化周长
(1)教材书84页的第3题
下面每组图形的周长一样吗?你是怎么想的?
师:请同学们仔细观察,下面两个图形的周长一样长吗?
师:谁来说一说你是怎么比较的?
师:通过移一移,我们把这个不规则的图形转化成规则的图形。然后比较发现他们的周长是(相等的)
师:再来比较一下这两个图形的周长一样长吗?
(2)教科书88页第8题
师:(课件出示长方形)这是什么图形?老师把它分成甲乙两部分,观察比较一下,哪个图形的周长长?你是怎么想?
预设:一样长,两个图形的周长都是一条长加一条宽,再加一条斜线。
师:老师把这条边变弯曲,现在两个图形谁的周长长?
预设1:甲的周长更长
预设2:一样长
师:你是怎么想的?
预设:两个图形的周长都是一条长加一条宽,再加上公共的那条弯弯曲曲的边,所以这两部分的周长一样长。
师:为什么一开始认为甲的周长长?
师:哦!原来如此。周长是图形一周的长度,并非指图形的内部。
小结:比较两个图形周长的时候,图形每条边的长度一样,它的周长就是一样的。
(3)生活中的周长(机动内容)
【设计意图】通过练习设计进一步内化周长概念,学生在观察、交流的过程中进一步理解周长的本质。通过对比、辨析排除内部线段和面积的干扰。同时体会图形转化的方法。
(五)归纳总结,内化新知(1分钟)
师:通过这节课的学习,你有什么收获?
同学们,今天我们初步认识了周长,知道了周长的概念,并且能够通过测量和计算得到图形的周长。希望课后同学们继续深入的研究周长。
【设计意图】让学生谈一谈自己的收获,是对本课知识的梳理和加深,从而让学生体验成功的快乐。
认识周长
封闭图形一周的长度是它的周长
直边:量、算
曲边:围、滚 (化曲为直)
在教学中,我们发现学生总是认为一周就是周长,故此我先让学生充分理解什么是“一周”,在此基础上,沟通一周和封闭图形之间的联系,然后通过学生的探究活动测量封闭图形一周的长度,并没有急于揭示周长的概念,而是让学生先在大量的活动体验中感知周长是可测量的一维图形,又在估的过程中进一步感知周长是图形边线的长度,只是存在于二维图形的面上,与面的大小无关,最后再由学生自己揭示周长概念。同时在这一系列的活动过程中培养学生的空间观念。
1、创设生活情境引入,学生通过观察对比三种不同的路线,突出“沿着边线,绕回起点”两个重要特征,然后再指一指、说一说生活中物体表面的一周,建立学生对“一周”的表象认识,为后面理解周长概念的本质做铺垫。
2、在小组合作的过程中,让孩子在探究测量周长方法的过程中,或测量或计算,充分体验、感受周长的本质就是长度,是可测量的一维图形。通过学生用线围曲边的一周,把边线取下来拉直、测量,帮助学生沟通一维图形和二维图形的联系,即周长是从面里脱离出来的线段,深刻体会周长概念的本质,学生的空间观念也在这个过程中不断地得到发展。
3、当学生利用充分的时间和空间完成了量一量的活动之后,再让他们观察三个图形的大小以及周长,去摸一摸,经过想象、比划以及之前的经验有条理的思考和推理、比较出三个图形的周长与什么有关,再次经历从二维图形中抽象出一维图形“线段”这个过程,最后通过教师化曲为直的验证,从而探索周长的性质,理解周长的本质就是线段的长度,积累了这样的实践经验和思维经验,获得贤明、生动形象的认识,进而形成表象,发展空间观念,为今后学习中区分清楚二维图形的“面积”和一维图形的“长度”打下坚实的基础。
4、在整节课每一次活动体验后,我都让学生描述、概括自己体验的感受和想法,通篇培养学生空间描述的能力。
1、以活动为基础来理解周长的含义
新课开始,让学生观察动画,初步感知边线,使学生体会图形一周的长度必须从起点开始绕边线一圈再回到起点,这样就把握住了周长概念的基本点。再通过学生动手描一描平面图形的一周,指一指具体物体某一个面一周的长度从而对周长的概念有了准确的理解,进而让学生讨论是不是所有的平面图形都有周长使学生体会到平面图形的周长的“封闭”观念,学生通过动手做悉心理解,加强感受,把生活中对边线的零星感受进行再现和体验。事实也证明学生通过这一过程,很多学生能充分理解周长所蕴含的真实意义。
2、以周长测量策略探究来内化周长的意义.
学生通过小组合作的形式运用准备的学具——尺子、线想办法量算出封闭图形和树叶的周长,然后汇报演示。出现两种情况一是图形的边是直线时可以用量、算的方法求出它的周长。而是图形的边是曲线时可以用绕,量的方法求出它的周长。深刻体会到解决问题策略的多样化,特殊问题有特殊的解决办法,让他们充分体验自主解决问题的快乐,享受成功的喜悦,有利于他们形成良好的数学认知结构。另外,汇报演示时的师生交流,生生互动虽然还没有做到很好,但还算达到了预期效果,让学生的知识和能力得到了同步发展,有利于全面提高学生的整体素质。
3、辨析中深化
周长只能用于二维图形上,它和面积总是同时出现在一个物体上的,所以它们是两个易混淆的概念。认识周长不能只孤立地认识周长,应该将其与面积进行区别。课尾设计的两道练习都是帮助学生深化理解周长的概念。在对比中发现不同,明析周长概念的内涵。
总之,概念课让学生真实地经历概念发生、发展的过程,才能让学生学得明白。我们将学生的经验水平改造为老师的学科水平。只有老师想的明白,学生才会学得明白。
分数的意义教学设计 分数的意义教学设计及设计意图篇五
苏教国标版数学六年级(上册)第98—99页例1和“试一试”“练一练”,第100页练习十九第1—3题。
1、让学生体验百分数的产生过程,初步理解百分数的意义,会正确地读、写百分数。
2、经历百分数意义的探索过程,体会百分数与分数的练习与区别,积累数学活动经验。
3、使学生能用百分数的知识描述、处理生活中的有关信息,培养学生的数感。
理解百分数的意义,会正确读、写百分数。
课前学生根据导学案预习,搜集百分数,ppt课件
1、设境
师:(出示课件)请看“新闻播报”,谁来读。指名读。
(1).高邮市在邮文化节期间,与外商正式签约项目数量占投资项目总数的73.3%。
(2).三垛镇今年的工业产值是去年的215%。
2、引题
师:同学们认识这些画横线的数吗?(认识)是什么数?(百分数)
怎么读?指名读。
师:百分数在我们的生活中有着广泛的应用。这节课,我们就一起来研究“百分数的意义和写法”,板书课题“百分数的意义和写法”。
教学例1。(出示课件)
1、探究
(1)、请注意观察,如果只看投中数,你们认为谁投篮最准?为什么?
(2)、这种方法公平吗?(不公平)为什么呢?指名说。那么,怎样找出投篮最准的人呢?小组交流,指名汇报。
(3)、根据学生回答在课件上出示:先求每人投中数占投球总数的__分之__。各是多少?根据学生回答板书:
师:你们能直接看出谁投篮最准吗?(不能)有办法进行比较吗?(通分)让学生在练习本上做一做。
那么,64/100表示的是的__________占_____________的____________。
65/100表示___________________________________________________。
60/100表示___________________________________________________。
这三个数都表示投中数占投球总数的____________。
(4)、求投中数占投球总数的百分之几,而不求几分之几,这样有什么好处?
(5)、你们课前看到的百分数是像92/100这样写的吗?可以怎样写?试一试。
(6)、(出示课件)百分数通常不写成分数的形式,而是在原来的分子后面加上百分号来表示(%)。
(7)、指导写法:写百分数时,例86%,按从左往右的顺序先写分子86,再写%。在写百分号时,也要注意按从左往右的顺序,先写左上角的小圆,接着写斜杠,最后写右下角的小圆。这样一个百分数就写成了。
让学生练写这三个百分数。
2、交流
(1)、师:刚才,我们借助了百分数选中了投篮最准的人;看来百分数真是个好帮手。课前老师让同学们搜集生活中的百分数。请同学说一说自己搜集的百分数。指名说。小组内交流。
(2)、师:我们再来说说新闻播报中百分数的实际意义。指名说。
3、概括:
(1)刚才,同学们说出了一些具体百分数表示的意义。那么,究竟什么样的数叫做百分数呢?
生交流汇报,出示意义,齐读。
(2)小组讨论:
1、百分数为什么又可以叫做百分比或百分率?
2、百分数不仅可以表示两个数量之间的关系,还可以表示什么?
3、为什么百分数不能用来表示某个具体的数量?
小组交流、指名汇报。
4、对比
完成练习十九第3题。
指名回答。
小组讨论:a运用百分数时要注意哪些?
b百分数和分数有什么区别和联系?
小组交流、汇报。
(一)、读读写写
1.读出下面的百分数(导学案第5题)
指名读,齐读。
2.写出下面各数(导学案第6题,为了方便,可在加一二题,如百分之零点八)
你写了几个百分数,同学们能用刚学的百分数说说他完成题数的情况,完成了___%,还剩____%没完成,希望你能达到100%。
现在请写好的同学举手。好,同学们都完成了作业,可以说“这次作业我们班完成了____%。
(二)会读、会写,更要会用,请看下题。
3.选择合适的百分数填空。
50%3.9%120%100%
(1)武宁小学学生每月所用零花钱占学校买图书钱数的25%,开展节约活动后,明显减少,现在只占( )。
(2)小汽车的速度是卡车速度的( )。
(3)只要同学们互相帮助,共同进步,这个单元考试的及格率一定能达到( )
(三)读出下面每一句话,你能体会句中百分数要表达的意思吗?你又能想到什么呢?
一本书已看了40%。
自行车厂上半年完成了全年生产计划的60%。
(四)轻松一刻。生活中有许多成语也和数学有关,请看——————妙解成语。
分数的意义教学设计 分数的意义教学设计及设计意图篇六
义务教育五年制小学数学第八册分数的意义。
义务教育六年制小学数学第十册分数的意义。
1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。
2.使学生理解分数的意义和单位“1”的含义及分子、分母的含义。
3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。
4.使学生受到初步的辨证唯物主义观念的启蒙教育。
让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。
电脑软件一套。
每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。
课前组织教学
今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)
在日常生活中,人们在进行测量和计算的时候,有时不能得到整数得结果,例如,用一个计量单位“米”测量黑板的长度(屏幕显示)量了3米后,剩下的一段不够1米了,还能用整数表示吗?又如,老师只有一个苹果要平均分给两个小朋友,每个小朋友分得多少个/还能用整数表示吗?这就需要用新的数,谁知道用什么数来表示?
板书:分数
对于分数同学们并不陌生,在三年级的时候我们已经初步认识过谁能说几个分数(指名说老师板书),谁还记得分数各部分的名称是什么?
到底什么样的数叫分数呢?分子、分母各表示什么意思呢?这节课我们就来进一步学习分数的意义,板书:的意义
1。把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的 。小组研究汇报。
2.根据刚才分的过程,把这些物体归两类,为什么这样分?
根据学生的回答板书:一个物体、一个整体(解释整体的含义)。
说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”
上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的 )
3.请同学们看屏幕,仔细观察回答问题
(1)把一块饼平均分成两份,每份是它的( )。
(2)把一张正方形的纸平均分成4份每份是它的( ),其余的3份是它的( )。
(3)把一条线段平均分成5份,每份是它的( )其余的是它的( )。
(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。
4.请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。
5.电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。
6.根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。
7.根据分数的意义指名说出刚才写的这些分数表示的意义。
8.教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。
9.做一做 电脑显示。
1.让同学们闯三关,电脑显示三关题。
2.三关闯过了,别忘了还要帮小猴分东西呢,苹果、熊猫已分过,还有西瓜和蛋糕,看小狗分西瓜(电脑显示)学生回答。提问:如果小狗把西瓜平均分成8块,小猴吃了3块,吃了西瓜的几分之几?小兔吃了2块,吃了几分之几?还剩下西瓜的几分之几?
分蛋糕,蛋糕上有四朵小花、12 支蜡烛,平均分成4份,每份都能用 来表示,但是这个 所表示的数量一样多吗?为什么?
这节课你学会了什么?
分数的意义
一个物体
一个计量单位 单位“1” 2/3 4/15 5/11
一个整体
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。