当前位置:网站首页 >> 作文 >> 五年级数学教师的教案解析(实用19篇)

五年级数学教师的教案解析(实用19篇)

格式:DOC 上传日期:2024-02-09 00:00:04
五年级数学教师的教案解析(实用19篇)
时间:2024-02-09 00:00:04     小编:ZS文王

在备课过程中,编写教案是提高教学质量的一项重要工作。教案的设计还要具备系统性和连贯性,让学生在不同阶段的学习任务之间有一个自然的衔接。想了解如何编写一份实用的教案吗?请看以下小编为您精选的教案样本。

五年级数学教师的教案解析篇一

【教学内容】。

小数除法的计算方法,第89页例5以及练习十六的第1-3题。

【教学目标】。

2.能力目标:并能正确进行计算,培养学生的迁移能力。

3.情感目标:通过启发学生思考,培养学生学习数学的习惯。

【教具准备】。

口算卡片投影仪。

【教学过程】。

一、复习。

1.口算:

42÷21120÷1296÷48250÷50。

374÷34192÷16125÷251050÷5。

2.计算:2250÷18。

说说整数除法的计算法则是什么?(从被除数的最高位除起,除数是几位数就先看被除数的前几位,如果不够除,就要多看一位,除到哪一位就把商写在哪一位的上面。每次除得的余数必须比除数小)。

3.导入新课:从今天开始,我们来学习小数除法。(板书课题)。

二、新授。

1.出示例题。

妈妈买鸡蛋用去7.98元。买鸡蛋多少千克?

2.列式。

7.98÷4.2=()。

3.讨论。

除数是小数的除法怎样计算?小组讨论。

试做。

可以把除数变成整数来计算吗?

把7.98和4.2都乘10,变成79.8÷42。

4.总结:

怎样把除数是小数的除法转化成除数是整数的除法?

注意做题之前审题:除数有几位小数?被除数有几位小数?将除数变成整数时,被除数的小数点怎样移动?怎样补“0”?(学生做完后集体订正。)。

三、练一练。

1.在括号里填上适当的数。

0.12÷0.3=()÷36.72÷0.28=()÷28。

0.12÷0.03=()÷30.672÷0.28=()÷28。

2.计算下面各题。

4.83÷0.70.756÷1.80.196÷0.56。

五年级数学教师的教案解析篇二

小数除法可以根据小数点处理的方法不同,分成两种情况:一种是除数是整数的小数除法,另一种是除数是小数的小数除法。由于除数是小数的除法要通过商不变的性质转化成除数是整数的小数除法来计算,所以除数是整数的小数除法是学习小数除法计算的基础,一定要让学生弄清算理,切实掌握。因此教学时利用很长时间进行探究,做到了水到渠成。

1、在教学时,为学生创设了一个比较熟悉的情境,调动学生的积极性,解决问题。由于提出的问题在现实生活中是存在的,学生能根据以往的生活经验进行思考、分析,从而增加解决问题的成功率,提高他们的学习兴趣。在教学设计中,由于不同的学生常常有不同的解题策略,为了最有效、最合理地解决问题,必须从中选择一个最佳算法。这里,为学生提供了数学交流的机会。

2、遇到课堂中学生分析问题或解决问题出现错误时,比如当学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误,学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。

3、除数是整数的小数除法的计算步骤与整数除法基本相同,唯一不同的是解决小数点的位置问题。为了说明商的小数点要和被除数的小数点对齐的道理,计算中在除过被除数的整数部分后还有余数,要着重说明把它化成用较小的计数单位表示的数,并与被除数中原有的同单位的数合并在一起,再继续除。例如,除到个位余2,把2化成20个十分之一,并与被除数中原来十分位上的8合在一起,是28个十分之一。除的时候,仍然是除到哪一位,就把商写在哪一位上面,由于要除的数是用小数计数单位十分之一、百分之一……表示的数,以后的商也应该是十分之几、百分之几……因此,要在商的个位数字的右面点上小数点来表示。从而说明了商里的小数点要和被除数的小数点对齐的道理。

4、以往过去的计算教学多采用教师讲授,学生练习的方法进行教学。但这种教学方法十分的枯燥无味,学生学习的积极性不高,课堂气氛不好。因此本节课的教学打破常规,在教学中大胆采用尝试教学法,利用学生已有经验进行自主探索学习。在教学方法之前为了给学生探索创造条件,探讨后,学生进行汇报。对于正确的方法给予肯定,而错误的方法给予鼓励。并且为找寻正确的思路,引导学生分别用整数除法的计算方法和转化为整数除法的两种思路进行解题。培养学生知识的迁移能力,和对问题的转化能力,这也是本节课设计中的一个难点。让学生自己学会解决问题的方法,增强数学的综合能力。效果还是很理想的。

五年级数学教师的教案解析篇三

课本第76页。

1、掌握小数四则混合运算的顺序,能正确地进行计算。

2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的'运算律对小数加法、乘法同样适用。

3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。

正确计算小数四则混合运算,应用运算律进行简便计算。

运用乘法的运算律进行小数乘法的简便运算。

课件

一、复习导入,揭示课题。(4分钟左右)

1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。

总结:

(1)同一级符号从左往右依次计算;

(2)既有加减,又有乘除,先算乘除,再算加减;

(3)有小括号的,先算小括号里面的。

乘法交换律ab=ba

乘法结合律a(bc)=(ab)c

乘法分配率a(b+c)=ab+ac

2、明确课题。

今天就一起来学习“小数四则混合运算”。

1、明确例14中的数学信息及所需要解决的问题。

2、自学。

导学单(时间:5分钟)

(1)看图,根据题意列出综合算式。

(2)你是按照怎样的顺序进行计算的?为什么可以这样计算?

(3)比较两种解法,哪一种更简便?

(4)计算并比较三组算式。

点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。

点拨:小数四则混合运算的顺序和整数相同。

总结:“先算出这块菜地的长,再算它的面积”相对简便些。

3、小组交流。

交流内容

(1)小数四则混合运算的顺序是怎样的?

(2)三道算式的圆圈里能填等号吗?为什么?

(3)整数加、乘法的运算律,对小数加、乘法也都适用吗?

4。集体交流。

导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。

(一)适应练习。

1。整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。

点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。

2。整合“练一练”第2题和练习十四的第2题,用简便方法计算。

点拨:0。25×36=0。25×4×9

运用了什么运算律?

2。4×1。02=2。4×(1+0。02)

运用了什么运算律?

(二)口答练习。

1、练习十四第1题中的6道题。

提醒:

(1)数位对齐;

(2)从个位算起;

(3)不要忘加小数点。

(三)整合练习。

1、练习十四第4题。

提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。

2、练习十四第5题。

点拨:

(2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。

(四)创编练习。

简便计算:7.3×9.9 0.125×8.8

提醒:7.3×9.9=7.3×(10-0.1)

0.125×8.8=0.125×8×1.1或

0.125×8.8=0.125×(8+0.8)

通过这节课的学习你学到了什么知识?

教学反思:

苏教版四年级上册《整数四则混合运算练习课》数学教案

苏教版四年级上册《整数四则混合运算练习课》数学教案

第七单元整数四则混合运算

第3课时整数四则混合运算练习课

教学内容:

教材第73页。

学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。

教学重难点:

掌握三步混合运算的运算顺序,巩固解决问题的策略。

教学过程:

1、揭示课题。

这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)

2、口算:

720÷90 484÷2 450÷50

28+42 3×48 40÷2

360×2 65-17 56+8

3、计算下面各题。指名说说混合运算的运算顺序是怎样的?

完成练习十一第9题。

学生独立计算,提醒自觉验算。

4、练习十一第10题。

说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。

通过计算检验。

1、练习十一第11、12题。

学生独立解答。

反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。

2、练习十一第13题。

先让学生独立完成估算,并说说是怎样估算的。

再列式算出结果,并把它与估算的结果比较。

3、练习十一第14题。

学生读题,独立解答。

反馈解题思路。

引导思考“你还能提出什么问题”。

学生提出问题并解答。

通过今天的练习,你有什么收获呢?

四则混合运算

这一单元的目标是这样定的:

1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。

2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。

3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的教师还真不少,认为还是有必要侧重解决问题的策略教学。

在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。

(1)42+6(12-4)

(2)42+612-4

口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后

括号外的乘法,最后算括号外的加法。算减法。

而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。

只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。

五年级数学教师的教案解析篇四

经过四年系统的数学学习大部分学生对数学学习的积极性比较高能从已有的知识和经验出发获取知识抽象思维水平有了一定的发展基础知识掌握牢固具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作、与人合作等一般能力在小组合作中同学之间会交流合作自主探讨。

优势:知识面广,合作意识强,思维速度快。

不足:求知欲不强,计算能力弱,思维的精度不高,作业速度不快且个别学生基础知识差,上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。

本学期重点抓好学习上有困难的学生教学,在教学中,面向全体学生,创设愉快情境教学,激发他们的学习动机,进入最佳学习的动态。

教材改动说明:五年级上册增补了“用数对确定位置”和综合与实践“数字与信息”,共8页。这两个内容原来都安排在实验教科书五年级下册。在新教材修订中,考虑到它们的内容难度,以及它们与其他内容的相互关联,这两个内容都调整至义务教育教科书四年级下册,而将有关因数和倍数的知识从四年级下册调至五年级下册。这样一来,2014年秋学期升入五年级的学生在四年级没有学过上述内容,而升入五年级后也没有机会学习。于是,在五年级上册增补了“用数对确定位置”以及综合与实践活动“数字与信息”。

(一)数与代数领域——数与代数领域的内容,无论从课时还是从内容份量上看,都仍然是小学数学教学的重要内容,这方面内容也是本册教材的主要内容之一,教材共安排6个单元,分为三个部分。

1.数的认识:教学了负数的初步认识、小数的意义和性质。

2.数的运算:数的运算教学了小数的四则运算和混合运算,以及利用小数计算解决实际问题,另外还有解决问题的枚举策略。

3.式与方程:式与方程主要是用字母表示数。

(二)图形与几何领域——本册教材在图形与几何方面主要教学平行四边形、三角形和梯形的面积计算,以及计量土地面积的单位公顷和平方千米。共安排1个单元,分三个部分。新课程要求多边形面积的教学,不仅让学生掌握求平面图形面积的知识与技能,还要通过面积公式的推导,体会“转化”是学习数学和解决问题的常用策略。

1.常用的面积单位、相邻单位之间的进率以及不同面积单位数量之间的改写方法;

2.移动小数点的位置,改变小数大小的方法与技巧;

3.长方形、正方形、三角形、平行四边形、梯形五个图形的面积计算公式。

(三)统计与概率领域——这部分内容安排了1个单元,即第6单元,复式统计表和复式条形图。

学习统计表和统计图的特点,并要求学生“举出一些用统计表和统计图描述数据的例子”,体会统计图表在日常生活中的应用,启发他们联系实际事例进一步感受复式统计图表的特点。

(四)综合与实践领域——本册教材共安排3次实践与综合应用活动:

1.“校园的绿地面积”:这是一次操作型实践活动,主要活动是测量土地的长度、计算其面积。认识土地的形状、设计并实施测量方案是活动的重点。

2.“班级联欢会”:组织一次班级联欢会有许多准备工作需要做,购买物品也是准备工作的一部分。这次实践活动为举行班级联欢会购买物品,联系实际应用小数四则运算的知识。学生刚学习了小数的计算,安排这样的实践活动很及时。实践活动的'教学目的不仅是开展活动,更要通过活动促进学生发展。因此,活动即将结束时,教材安排“回顾反思”栏目,交流活动中的收获和体会。

3、“钉子板上的多边形”:这是一次研究平面图形面积的活动,安排在形成了面积概念,掌握了常用面积单位,能计算简单图形面积的基础上进行。通过学生在钉子板上围图形、数钉子的枚数、算图形的面积,探索围成的图形面积与图形边上的钉子枚数之间的关系,还要用含有字母的式子表达这种关系,培养学生探索精神和数学思维能力。

重点:多边形面积的计算、小数加减法、小数的乘法和除法的意义和计算法则。

难点:用字母表示数、理解小数的乘法和除法的意义和计算方法的道理,准确计算,引导梳理适合学生自主解决的实际问题。

(一)知识与技能。

1.使学生联系已有的知识经验,经历从具体问题中抽象数量关系并探索计算的过程,掌握有关的计算方法;初步认识负数的一些特征;初步理解用字母表示数的意义和基本方法。

2.让学生经历动手操作,通过图形的等积变形,探索常见平面图形的面积计算方法,经历推导面积公式的过程,加强“转化”思想的教学。

3.联系具体问题初步认识复式统计表和复式条形统计图,初步掌握用复式统计表和复式条形统计图表示数据的方法,能按照数据变化特点进行简单的分析、交流;初步学会根据数据特点和实际需要选择统计方法。

(二)数学思考方面。

1.在探索计算方法的过程中,发展合理推理能力。

2.在探索负数的特征,学习用字母表示数的过程中,进行观察、比较、分析、综合,进一步发展抽象思维,增强符号感。

3.在探索多边形的面积计算过程、对图形进行转化中,进一步发展形象思维和空间观念。

4.在收集和整理数据、选择相应的形式描述数据,以及对统计结果进行分析和解释的过程中,进一步增强统计观念。

(三)解决问题方面。

1.能从现实情境中发现并提出一些简单的数学问题,并能运用所学的测量、估计、作图、计算、统计等数学知识和方法解决问题,进一步发展应用意识。

2、能在解决问题的过程中,初步学会用枚举的策略解决问题。

3.在解决问题的过程中,进一步积累解决问题的策略,体会解决问题策略的多样性,逐渐增强对解决问题过程的反思意识。

(四)情感与态度方面。

1.在探索和发现数学知识、规律的过程中,进一步获得成功的体验,产生对数学事实和数学内在联系的好奇心,树立学好数学的自信心。

2.在理解数学内容以及运用数学知识、方法解决简单实际问题的过程中,进一步体验数学与生活的密切联系,感受数学的价值与作用。

3.能努力克服数学学习中遇到的困难;热心参与数学问题的讨论;发现错误能主动改正。

4.能主动、认真地阅读一些数学背景资料,感受数学在社会法发展中的作用,进一步形成对数学的积极情感。

1.以开放式教学理念为核心,创设愉悦的教学情境,激发学生学习的兴趣。

2.教材的例题、练习题的选材,力求贴近学生的生活实际。对练习题做适当的改编与创新,同时对不同层次的学生布置不同的练习。

3.利用课余时间,培养学生的数学阅读能力。对于学习能力较好的学生,鼓励他们阅读《小学生数学报》等,拓宽知识面,激发学生的数学学习热情。

4.认真钻研教材,结合高年级学生的年龄特点,教给学生科学的学习方法,使学生学会学习,逐步培养学生的自学能力。

5.加强小组合作学习的指导,提高小组合作学习的效率,是每个组员都能学有所得。

6.坚持学生的学习习惯养成教育,使学生养成一丝不苟、认真作业,细心检验的学习习惯,养成整理错题集,在班级中成立“一帮一”的学习小组,每天进行“错题一扫清”的活动,帮助后进生每天都在进步,全面提高教学质量。

7.在教学中,注意与生活实践相结合,让学生感觉学习不再枯燥无味,培养学生灵活运用数学知识解决生活中的简单问题的能力,优化作业设计,不搞题海战术,不加重学生的课业负担。

8.借助家校通这个平台,积极主动地与家长多联系,全方位地了解学生,同时也让家长了解自己的孩子。

五年级数学教师的教案解析篇五

教学目标:

1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个“老爷爷分地”的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1、动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

五年级数学教师的教案解析篇六

1.本单元的内容结构及地位作用。

本单元的主要内容有:小数除以整数、一个数除以小数、商的近似值、循环小数、用计算器探索规律、解决问题。

小数除法可以根据小数点处理方法不同,分成两种情况:一种是除数是整数的小数除法,另一种是除数是小数的小数除法。由于除数是小数的除法要通过商不变的性质转化成除数是整数的小数除法来计算,所以小数除以整数是学习小数除法计算的基础,一定要让学生弄清算理,切实掌握。除数是小数的除法是小数除法的重点内容,教材在编排时重点突出怎样把除数是小数的除法转化成除数是整数的除法。

商的近似值和循环小数都是进一步研究商,通过学习学生可以根据具体情况灵活地处理商,并认识循环小数等有关概念。

用计算器探索规律,既可使学生学习借助计算工具探索数学规律,又可激发学生的学习兴趣。2.本单元教材的编写特点。

(1)展示学生对小数除法计算方法的探究过程。

首先在小数除以整数中,教材让学生根据已有的知识经验对小数除以整数进行探究,呈现了把千米数改写成米数,将小数除以整数转化为整数除法来计算的方法,通过与小数除以整数的一般方法的对比,使学生看到两种方法的联系。其次组织学生对一些关键问题进行讨论,比如在除数和被除数同时扩大相同的倍数时,被除数位数不够怎么办?商的整数部分不够商“1”时,为什么要写“0”,通过对这些关键问题的探讨,帮助学生掌握小数除法的计算方法。第三是小数除法的计算方法都是引导学生自己进行归纳总结。

(2)计算内容紧密结合现实情景。

数学与生活有着密切的联系,计算内容更是如此,因此教材注意从现实情景中引出计算内容,在计算练习中,也尽可能选择贴近学生生活实际的内容,比如购物、乘车、计算用水量等,让学生体会计算的现实意义,同时提高解决实际问题的能力。

(3)适时引入计算器。

小数除法计算的步骤比较多,适宜使用计算器。教材把握时机,不仅在新授内容和练习中让学生适时使用计算器,而且还专门安排用计算器探索规律的内容。使学生通过亲身体验,感受到计算器的作用和优势,同时培养灵活选择计算方法和工具的意识。

教学建议。

1.抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。

本单元内容与旧知识联系十分紧密。小数除法的计算法则是以整数除法中被除数和除数同时乘上相同的数(0除外)商不变,以及小数点位置移动规律等知识为基础来说明的。小数除法的试商方法,除的步骤和整数除法基本相同,不同的只是小数点的处理问题。因此,要注意复习和运用整数除法的有关知识,为新知识的学习奠定好基础。

2.联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。

小数除法的重点是突出小数点的处理问题,而商的小数点为什么要和被除数的小数点对齐要涉及数的含义。

五年级数学教师的教案解析篇七

教学内容:使学生进一步理解除数是整数的小数除法的计算方法,进一步学会计算除数是整数的小数除法,掌握计算法则,提高计算能力。

教学重点:会计算除数是整数的小数除法,掌握计算法则。

教学难点:添“0”及整数部分不够商“1”的情况。

教学过程:

一.复习铺垫。

1.把下面的数改写成三位小数。

4.20.713.563(要求学生说明改写的依据)。

2.计算下面各题。

45.6÷89.12÷6。

提问:这里除数是整数的小数除法是怎样算的?(出示:按照整数除法的法则除,商的小数点要和被除数的小数点对齐)。

3.揭示课题并板书。

二.教学新课。

1.教学例2。

(1)这道题是怎样的小数除法,你会算吗?

(学生试做,一人板演)。

你算到了哪一步?与前一节课的计算有什么不同?

引导学生观察:除到十分位时,余下了多少?是12个几分之一?

谁有办法在“12”末尾添上一个什么数字,使数的大小不变继续除下去?为什么可以添“0”?添“0”后的120又表示什么?(板书)。

接着怎样除,请学生把这道题算完。

谁来说一说,例2与以前学的除法计算题有什么不同?怎样继续算下去?

指出:除到被乘数末尾有余数,在余数后面添“0”继续除。(出示结论)。

(2)学生练习66.08÷32。

注意提问十分位上为什么商“0”,末尾有余数是怎样除的。

2.教学例3。

(1)读题列式。提问:被乘数比除数,谁大谁小?36除以48够不够商1?

说明:在这种情况下,商应该是零点几的小数。个位要写0,表示商是小于1的小数,这与整数除法不同。

提问:怎样才能使被乘数大小不变,继续除下去?

追问:能直接添一个0写成360来除吗?为什么?

说明:36是整数,末尾不能直接添0。要使被乘数大小不变继续除下去,必须在个位6的右下脚先点上小数点,(板书)再在后面添上0,(板书)化成360个十分之一继续除。

现在你能除了吗?学生做在练习本上,一人板演。

请大家用乘法验算。提问:验算结果说明了什么?

指出:在小数除法里,被乘数如果比除数小,整数部分就不够商1,先要在商的个位上写0。(出示结论)在个位商0后,还要在被乘数的末尾点上小数点,添0继续除。

(2)练习9.12÷1957÷750。

3.归纳法则。

让学生读一读计算法则。

三.组织练习。

1.做练习九第6题。

2.做练习九第8题。

提问:每组题里被乘数或除数有什么变化?商是怎样变化的?通过这组题的计算,你认为除数是整数的小数除法,按整数除法计算时,要注意那些问题?(商的小数点与被乘数小数点对齐;被乘数比除数小,整数部分不够商1要商0;有余数末尾添0继续除)。

四.课堂作业。

练习九第5题第7题。

五年级数学教师的教案解析篇八

教学内容:《义务教育课程标准实验教科书数学五年级上册》第92~94页。

教学目标:

1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

3.培养学生的认真观察、独立思考的能力。

教具准备:课件、图片等。

教学过程:

一、展示汇报建立概念

师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)

生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

生2:这条小鱼的面是由两个三角形组成的。

……

师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。)

师:老师也搜集了一些生活中物品的图片,(课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。……

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。

……

师小结:组合图形是由几个简单的图形组合而成的。

说一说,生活中有哪些地方的表面有组合图形? (学生自由回答)

师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?

生1:我想了解组合图形的周长。

生2:我想知道组合图形的面积怎样计算。

……

这节课我们重点学习组合图形的面积。(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于状态,形成强烈的求知欲。)

二、自主探索计算方法

(课件出示)下图表示的是一间房子侧面墙的形状。

认真观察这个组合图形,怎样计算出面积呢?

大家在图上先分一分,再算一算。

然后,在小组里互相说说自己的想法。

(学生活动,教师进行巡视指导)

指名汇报:

生:把组合图形分成一个三角形和一个正方形。(教师用课件演示:三角形和正方形分别闪动。)先分别算出三角形和正方形的面积,再相加。

教师边听边列式板演:5×5+5×2÷2

=25+5

=30(平方米)

师:还有不同的算法吗?

生:把这个组合图形分成两个完全一样的梯形。(教师用课件演示:两个完全一样的梯形闪动)先算出一个梯形的面积,再乘2就可以了。

学生说算式教师进行板演:(5+5+2)×(5÷2)÷2×2

=12×2.5÷2×2

=30(平方米)

师:你认为那种方法比较简便呢?

学生说自己的想法。

师:在计算组合图形的面积时有多种算法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。

(设计意图:在学生解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、培养了能力。这时,为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法,实现方法的化。通过学生的试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。)

师:通过学习,你认为怎样计算组合图形的面积?

学生回答。

师小结:在计算面积时,先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。

在计算面积时,还要注意些什么?(学生根据自己的想法回答)

三、反馈练习及时巩固

1.(课件出示:队旗)要做一面这样的队旗,需要多少布呢?认真观察图,选择有用的数据,你想怎样计算?把你的算法在小组里交流。

指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

2.(课件出示:空心方砖)它的实际占地面积是多少?自己独立思考并计算,说说自己的想法。

3.(课件出示:火箭模型的平面图)选择有用的数据,独立完成,师生共同订正。

4.同学们刚才计算的是老师搜集的组合图形的面积,你们想不想算一算自己搜集的组合图形的面积呢?选择一个简单的图形,量出有用的数据,算一算组合图形在纸上的面积。先指名汇报,再互相检查算得对不对。

5.出示题目:(单位:厘米)计算下面图形的面积。你有不同的算法吗?

(设计意图:这组习题形式多样、难易适度,既巩固了本课所学的知识,又培养了学生的学习能力。体现了数学来源于生活,有应用于生活的教育理念。)

四、课后小结:这节课你学会了什么?有什么收获?

五年级数学教师的教案解析篇九

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会“整数”与“部分”的关系。

二、重点难点

重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

难点:充分体会“整数”与“部分”的关系。

三、教学过程

(一)复习旧知,导入新课

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)

活动二:教材p34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗?

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)

(三)巩固练习

1、教材p34画一画。

2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

整体相同,相同分数表示的数量也相同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

五年级数学教师的教案解析篇十

已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。

本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。

1、在具体情境中进一步理解分数,体会分数的相对性。

教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。

在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。

2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。

除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。

3、经历知识的形成过程,探索分数的基本性质。

分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。

4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。

本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。

“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。

(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。

(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:

得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。

接着,引导学生从右向左观察,并练习:

得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。

在让学生观察其他几组分数,能得出同样的规律。

(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。

五年级数学教师的教案解析篇十一

1、能够认识长方体和正方体,具有初步的立体空间想象能力。

2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。

能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

师生共同归纳和推理。

多个正方体盒子。

一、复习导入。

教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。

学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)。

二、讲授新课。

学生观察图片并计算露在外面的面积是多少平方厘米?

教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。

教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)。

教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。

三、课堂小结。

同学们,这一节课你学到了哪些知识?(提问学生回答)。

板书设计:

露在外面的面。

从正面、侧面、上面看一看,一共有几个面露在外面?

五年级数学教师的教案解析篇十二

2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。

3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。

1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。

2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。

(一)动手操作,明确目标。

1、谈话导入,开门见山板书课题:

异分母分数加减法,出示学习目标,生齐读。

(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的。

加减法。

(2)通过直观的操作活动,理解异分母分数加减法的算理。

师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折。

纸研究解决解决异分母分数加减法的相关知识,有信心吗?

2、请看要求。

3、动手操作。

师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)。

4、学生汇报展示。

师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)。

5、提出问题,明确目标。

师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)。

想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)。

还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)。

师:从学生汇报的'异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。

(二)自主探索,理解算理。

1、自主探索进行算理探究。

师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:

结论1:(1/2+1/4=1/6)。

结论2:(二分之一加上四分之一等于四分之三)。

结论3:(二分之一加上四分之一等于六分之二)。

2、讨论验证。

师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?

生:在全班范围内展开讨论,充分发表各自的意见。

3、理解算理。

师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。

注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。

师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?

出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。

师:可不可以将百分位上的1加上十分位上的3?

生1:不可以。因为相同的数位没有对齐。

生2:小数点没对齐。

师:小数点没对齐也就是什么没对齐?——数位没对齐。

师:数位不同也就是什么不同?(计数单位)。

师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)。

4、小结算理。

谁来说究竟该怎样计算异分母分数的加法呢?

生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。

(三)迁移应用,巩固提高。

1、迁移应用,解决减法问题:

1/2-1/4=。

2、完成“试一试”

出示试一试的+与-,再次为学生提供尝试机会。

(学生练习后全班回馈交流,并规范书写格式。)。

师:通过刚才的学习,你发现异分母分数加减法应怎样计算?

xx。

五年级数学教师的教案解析篇十三

1、比较系统地理解自然数、整数、分数、小数、百分数的意义。

2、自然数、整数、分数、小数、百分数的联系和区别。

3、对各种数进行分类,体验分类的原则与方法。

4、掌握十进制计数法。

教学重点:在已有知识经验的基础上,加深对各种数的意义的理解。

教学难点:分类,形成系统,理解数与数之间的联系与区别。

教学关键:数的意义的理解。

教学准备:多媒体课件

同学们,在小学阶段,我们认识了很多的数,你能说说我们已经学习了哪几种数吗?(教师板书各种数)

1、用数表示数轴上的各点,唤醒学生对数的认识。

(1)教师先确定“0”的位置,然后由学生分别指出1、2、-1、-2所在的点各用什么数表示。

(2)引导学生发现规律。

从这条线上,你能发现什么规律?

(3)请学生指出、0.3、1、2、2.9所在的点各用什么数表示。

能不能说说为什么这些点要用分数或小数表示?

你还发现了什么?

(4)请学生在上面的这些数中分别找出黑板上板写的各种数。

我们还学过哪些分数?分数的个数是怎样的?分数可以分成哪几类?

我们还学过哪些小数?它们的个数是怎样的?小数可以分成哪几类?

我们还学过哪些自然数?它们的个数是怎样的?

我们还学过哪些正数?它们的个数是怎样的?

我们还学过哪些负数?它们的个数是怎样的?

除了这些数,我们还学习过那些数?(引出百分数)

2、归纳分类

学生汇报。

(1)(2)

在分类的时候,我们要注意什么?

1、整数和分数之间有什么联系和区别?(负整数不在讨论的范围)(举例说明)

联系:(1)它们都有各自的计数单位。

(2)整数可以转化成分母是“1”的分数形式。

区别:(1)分数是把单位“1”平均分成若干份,表示这样的一份或几份的数,分数用来表示不满“1”的数,整数则是表示几个“1”。

(2)它们的计数单位不同。

2、整数和小数之间有什么联系和区别?(举例说明)

联系:进制相同,都采用十进制计数法。(填写数位顺序表)

区别:(1)小数是把单位“1”平均分成10、100、1000......份,表示这样的一份或几份的数,小数用来表示不满“1”的数,整数则是表示几个“1”。

(2)它们的计数单位不同。

3、分数和小数之间有什么联系和区别?(举例说明)

联系:(1)小数是分数的一种特殊的表现形式,都用来表示不满“1”的数量。

(2)分数和小数可以互相转化。

区别:它们的计数单位不同。

4、分数与百分数之间有什么联系和区别?(举例说明)

联系:百分数是一种特殊的分数。

区别:分数可以表示数量,后面可以加单位,分数也可以表示两个数之间的倍数关系,分数还可以表示两个数相除,分数的分母可以是零以外的任何一个整数。百分数则一般只用来表示两个数之间的倍数关系,分母是固定不变的。

1、将下面的数填在适当的()里。

(1)冰城哈尔滨,一月份的平均气温是()摄氏度。

(2)五(4)班喜欢运动的同学占全班同学总数的()。

(3)杨老师的身高()米。

(4)某市今年参加马拉松比赛的人数是()。

2、在括号里填上合适的数。

(1)270.46=2×()+7×()+4×()+6×()

(2)2:()=0.4===()%

(3)一个数由7个组成,这个数是(),它的倒数是()。

(4)把4千克葡萄干平均分成8包,每包是()千克,每包占总数的()。

同学们,这节课我们系统的复习了小学阶段我们所学过的各种数,这些数为我们的学习和生活奠定了基础,你们知道没有数之前人类是怎样来表示数量的多少的吗?如果现在没有了这些数,我们的生活会是怎样的?除了这些数你还知道那些数?数的知识浩瀚无比,你们要努力学习,打好基础,将来有更多的数等待你的发现和创造。

五年级数学教师的教案解析篇十四

教学目标:

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

教学过程:

练习四

一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

五、针对学生在学习过程中出现的问题适当的进行补充和强化。

五年级数学教师的教案解析篇十五

教学目标:

知识与技能:会用量具测量不规则物体的体积。

过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。

情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。

教学重点:探索不规则物体体积的测量方法。

教学难点:知道不规则物体的体积就是排开水的体积。

教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。

教学过程:

师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。

师:小胖想问问你们这些物体的体积你们会求吗?怎么求?

1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。

2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。

b、把容器内的水倒在量杯内,就能测出水的体积。

师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。

(出示课题:用量具测体积)。

师:我们首先来观看大屏幕。(视频)。

师:请大家交流一下,你看到了什么?

生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。

师:大家再看一下……。

师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的水面高度会上升?

师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。

生:容器内水面高度会下降。

师:再将石块放入容器内呢?容器内的水面高度又会xxxx?

师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)。

生:水面升高的那部分水的体积就是石块的体积。

实验告诉我们是如何测量罐头的体积?罐头的体积是多少?

(原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)。

师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积。

师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?

1、观察原来水的体积。

2、放入石块。

3、观察变化后的体积。

4、求两个体积的差。

师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)。

(不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)。

师:只有将石块整个都浸在水里面,水面升高那部分的水的体积就是石块的体积。

师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)。

师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。

师:请同学们说一说乌鸦为什么会喝到水?

(把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)。

师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的去思考,找到解决问题的好方法。

师:接下去请同学们把书翻到67页,独立完成书上的第二题。

师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?

(原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。

上升部分水的体积就是苹果的体积:800-600=200ml=200cm3。

(相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)。

a

一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)。

b

讨论题:

有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)。

判断题。

(容器的厚度不计)。

a、

1.5×1。2×4。5。

b、

1.5×1.2×6。

c、

1.5×1.2×(6—4.5)。

d、

1.5×1.2×(4.5+6)。

2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)。

a、

10×4÷(3×4)。

来自 CooCo.neT.cN

b、

10×4×0.5÷4。

c、

3×4×0.5÷(10×4)。

d、

10×4×0.5÷(3×4)。

深化练习:

从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)。

h独立练习:

1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)。

2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)。

师:通过今天的学习,你有什么收获?

五年级数学教师的教案解析篇十六

1、能直接在方格纸上数出相关图形的面积。

2、能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。

3、在解决问题的过程中体会策略,方法的多样性。

将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。

如何将整体图形转化为部分的图形。

多媒体课件,作业纸。

一、复习旧知。

不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的?对于图123学生的方法会有很多,要对学生进行充分的肯定。

(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)。

二、新授。

(一)对图形特征的观察。

今天老师带来了一块漂亮的地毯,出示课件。

请同学们用数学的眼光来观察,说说这幅图有什么特点。

生1:这块地毯是轴对称图形,是由许多小正方形组成的。

师问:对称轴在哪里?有几条?

(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)。

生2:这块地毯是蓝色和白色两种颜色。

师问:能找到这两种颜色的格子与总格子数之间的关系吗?

(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)。

生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形。

师问:能到前面来指给大家看吗?

(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索=,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)。

(二)提出问题。

1、独立探究。

同学们对地毯图案有了充分的`认识,老师想知道蓝色部分的面积,你认为该怎么算?

同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。

(教师巡视学生的活动情况,并留意不同的解决问题的情况)。

2、合作交流。

师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?

(学生小组内进行交流)。

师:大家都讨论得很充分了,谁愿意代表小组与大家分享?

3、展示提高。

生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。

生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6、再把每行的数相加,也是108平方米。

生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。

生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。

师:请你上来指一指你所说的左上角。

(学生上台活动)。

师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?

教师引导学生总结出:分整体为部分,知道部分求整体。

师:谁还有不同的方法?

生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米。还有4个3乘3的正方形,面积是36平方米。4个4乘1的长方形,面积是16平方米。中间蓝色面积是2×4=8平方米。总面积是48+36+16+8=108平方米。

师:你能把找到的长方形上来指给大家看吗?再写出每一步的算式。

(学生按要求重新说一遍)。

生6:上下左右有4个6乘3的长方形,面积是72平方米。每个角还有7格,再乘4是28平方米。加上中间8个,蓝色部分面积也是108平方米。

生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49—20—2=27平方米,再乘4得到蓝色部分面积是108平方米。

生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。

生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14—12×4—5×2×4,剩下面积是108平方米。

师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?

学生重新叙述一遍。

师:这种方法和前面方法有什么不一样?

生10:用的是地毯总面积减去白色部分面积得到蓝色部分面积。

生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14—2×2×3×4—4×2×5,求得蓝色部分面积是108平方米。

生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14—4×2×11。

生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14—2×2×22。

生14:14×14—4×3×4—4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。

生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。

师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察。

生16:可这些正方形像拉环一样套在一起。

(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)。

生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12—8+8。

生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)—8+8。

生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108。

生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。

(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)。

(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)。

三、小结。

四、综合运用。

课本第一题:选择自己喜欢的方法来解决问题。

(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)。

第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。

(选择自认为最简便的方法汇报)。

第三题独立解决,并对比两组题,把你的发现写在练习本上。

(学生之间进行交流)。

五年级数学教师的教案解析篇十七

xxx年12月11日。

复习复式统计表和复式条形统计图,完成“练习与应用”1-3题。

1、使学生进一步学习和认识复式统计表,根据收集、整理的数据填写统计表,并能根据统计表中的数据进行简单的分析。

2、使学生进一步认识复式条形统计图,学习根据收集、整理的数据完成复式条形统计图。

3、感受数学与生活的密切联系,发展数学应用意识。

统计图与统计表

小组讨论:

这一单元,你学习了那些知识?你有什么收获?

1、完成第1题。

可以让学生根据教材提供的数据独立填表,再进行适当交流。

要重点指导计算“人均耕地面积”的计算方法。知道根据问题,应该用全果耕地的总公顷数除以总人口数。

总结,得数大约是0.11公顷。

2、你知道吗。

先让学生自由阅读,再交流体会。

3、完成第2题。

学生观察后,可以要求说说这里的复式条形图与此前认识的复式条形图有什么不同,体会复式条形图的具体形式是可以变化的。

学生填表后,适当可以组织交流,使学生体会我国城乡社会经济正在不断发展、进步。

4、完成第3题。

可以先让学生根据复式统计表中的数据独立完成条形统计图,再组织对统计图的观察与分析。

要启发学生根据对条形统计图的直观观察从整体上评价这两只球队,看出红队的状态不够稳定,而蓝队的水平正在逐步提高。

这节课你又收获了什么?

五年级数学教师的教案解析篇十八

(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

(3)观察,说说你发现了什么?==(课件揭示)。

(4)交流:你还有什么发现?

分数的分子和分母变化了,分数的大小不变。

分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以相同的数)(课件演示)。

3、出示做一做图片(2),学生独立填写分数。

(1)说说你是怎么想的?

(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)。

4、想一想:引导归纳分数的基本性质。

(1)从刚才的演示中,你发现了什么?

板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词“都”、

“相同的数”、“0除外”。“都”可以换成哪个词?——“同时”。

板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)。

5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12)(课件揭示)。

6、趣味比拼,挑战智慧。

给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

三、多层练习,巩固深化。

1、考考你(第43页试一试和练一练第2题)。

2/3=()/186/21=2/()。

3/5=21/()27/39=()/13。

5/8=20/()24/42=()/7。

4/()=48/608/12=()/()。

2、涂一涂,填一填。(练一练第1题)。

3、请你当法官,要求说出理由.(手势表示。)。

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。()。

(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()。

(3)3/4的分子乘3,分母除以3,分数的大小不变。()。

(4)10/24=10÷2/24÷2=10×3/24×3()。

(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。()。

(6)3/4=3×0/4×0=3÷0/4÷0()。

4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

5、(1)把5/6和1/4都化成分母是12而大小不变的分数;。

四、拾捡硕果,拓展延伸。

(或用分数表示这节课的评价,快乐和遗憾各占多少?)。

2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)。

3、拓展延伸。

五、动脑筋退场。

让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边,与4/5相等的站在教室的左边。

五年级数学教师的教案解析篇十九

1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

发现解决这类问题的最佳策略。

理解并认可最佳策略的有效性。

活动1【导入】创设情境、激发兴趣

1、看视频,谈感受。

播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?

2、发现次品。

生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。

今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)

活动2【讲授】初步感知、寻找方法

1、出示例题。

有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?

数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。

2、天平的原理。

如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。

3、华罗庚的数学思想。

让学生自由猜测称的次数。

师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!

活动3【活动】自主探究、方法多样

1.研究2瓶

师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)

2.讨论3瓶的问题

如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)

注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。

3.研究4-8瓶的问题

如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?

学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。

4.重点汇报8瓶的设计方案。

(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。

(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。

5.研究9瓶

学生根据总结的方法直接说出次数,小组验证。

活动4【练习】拓展提高,优化方案

1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?

2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服