作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。写教案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
数学五年级教案篇一
1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。
2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。
3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。
熟练运用长方体和正方体的体积计算公式解决实际问题。
长方体和正方体的体积计算公式演变成“横截面的面积乘长”。
一、巧设情境,激趣引思。
同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。
(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?
(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?
(3)学生分组讨论,指名回答问题。
这节课我们运用体积的有关知识,解决实际生活中的问题
二、自主互动,探究新知。
课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。
教师介绍“方”,让学生用方描述挖出的土。
课件出示例题及拦河坝的和示意图。
让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。
怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。
让学生尝试解决问题,并交流计算的方法和结果。
三、应用拓展,反思交流。
1、应用:
(1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。
(2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。
第3、4题,让学生先说一说,要解决问题,先要求出什么?
2、拓展:
练一练5 板书设计:
简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。
横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。
数学五年级教案篇二
在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。
1、学生对于抽象概念的`学习积极性不高,理解概念和适时判断的能力还不强;
2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。
1、帮助学生理解质数、合数的概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。
2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。
3、活化抽象的概念,增进学生应用数学的意识,激发学生学习数学的热情。
1、质数、合数的意义。
2、质数、合数与奇数、偶数的区别。
数学五年级教案篇三
1、能够认识长方体和正方体,具有初步的立体空间想象能力。
2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。
师生共同归纳和推理。
多个正方体盒子
一、复习导入
教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。
学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)
二、讲授新课
学生观察图片并计算露在外面的面积是多少平方厘米?
教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。
教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)
教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
露在外面的面
从正面、侧面、上面看一看,一共有几个面露在外面?
数学五年级教案篇四
1、运用角色游戏活动,帮助幼儿建立初步的角色意识,丰富幼儿的生活经验。
2、复习区分圆形、三角形和正方形的外形特征,尝试描述图形的二维特征。
3、启发幼儿用礼貌用语,进行简单的交往,积累美好的情感体验。
重点:在游戏活动中积累生活经验,并愿意描述。
难点:区分物体图形、颜色的二维特征。
1、小熊两个;小鸭、小兔、小猫挂饰若干;各种形状的礼物若干。
2、供幼儿操作的圆形、三角形和正方形的、大小、颜色不同的饼干若干,贴有圆形、三角形和正方形标记的'盘子各一。活动设计:
一、引起兴趣:
1、今天,我们来做个游戏——扮小动物,你愿意扮谁就选一个挂饰挂在身上。
2、幼儿带上挂饰,你扮谁呀?(我是小兔、我是小鸭……)
4、怎么去呢?买些什么礼物呢?
5、每位选一件礼物,你选的是什么?告诉你的好朋友。
6、出发——小熊家到了。(敲门进入)
二、送礼物:
1、告诉小熊自己送的是什么礼物,并祝小熊生日快乐。
2、按小动物分组把礼物送给小熊。
3、请个别幼儿把礼物按图形分类。
三、小熊请客人吃饼干:
1、小黑和小白准备了点心给你们吃,(出示两盆饼干)小黑准备的是奶油饼干,小白准备的是葱油饼干。
3、小白请大家动脑筋:
(1)请小鸭吃红的三角形饼干;
(2)请小兔吃黄的圆形饼干
(3)请小猫吃绿的正方形饼干。
四、结束部分:
1、我也准备了一份礼物(出示生日蛋糕),引导幼儿一起唱“生日快乐歌”。
2、时间不早了,我们该回家了,等到明年再来给小黑、小白过生日。为您服务学科吧
数学五年级教案篇五
(一)知识目标
1、理解小数除法的意义。
2、掌握小数除以整数(恰好除尽)的计算方法。
(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。
(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。
小数除法的意义,小数除以整数(恰好除尽)的计算方法。
商的小数点与被除数的小数点对齐。
探究、交流、引导。
一、导入新课,创设情境
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式:11。5÷5 12。6÷6
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。
二、探索新知,解决问题
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
2、学生交流讨论,教师巡视指导。
3、教师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?
引导出“商的小数点与被除数的小数点对齐”。
4、理解算理。
5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。
6、学生尝试计算,教师巡视指导。
三、巩固练习,拓展延伸
1、完成教材第3页练一练第1题。
集体订正。
2、我是小小神算手。
20。4÷4 96。6÷42 55。8÷31
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
教师巡视指导。
四、全课总结
今天你有什么收获呢?
板书设计:
甲商店牛奶每袋多少钱?乙甲商店牛奶每袋多少钱?
11。5÷5=2。3(元)12。6÷6=2。1(元)
数学五年级教案篇六
教学目标:
知识与技能:会用量具测量不规则物体的体积。
过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。
情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。
教学重点:探索不规则物体体积的测量方法。
教学难点:知道不规则物体的体积就是排开水的体积。
教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。
教学过程:
师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。
师:小胖想问问你们这些物体的体积你们会求吗?怎么求?
1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。
2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。
b、把容器内的水倒在量杯内,就能测出水的体积。
师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。
(出示课题:用量具测体积)
师:我们首先来观看大屏幕。(视频)
师:请大家交流一下,你看到了什么?
生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。
师:大家再看一下……
师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的水面高度会上升?
师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。
生:容器内水面高度会下降。
师:再将石块放入容器内呢?容器内的水面高度又会xxxx?
师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)
生:水面升高的那部分水的体积就是石块的体积
实验告诉我们是如何测量罐头的体积?罐头的体积是多少?
(原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)
师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积
师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?
1、观察原来水的体积。
2、放入石块。
3、观察变化后的体积。
4、求两个体积的差。
师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)
(不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)
师:只有将石块整个都浸在水里面,水面升高那部分的水的体积就是石块的体积。
师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)
师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。
师:请同学们说一说乌鸦为什么会喝到水?
(把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)
师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的去思考,找到解决问题的好方法。
师:接下去请同学们把书翻到67页,独立完成书上的第二题。
师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?
(原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。
上升部分水的体积就是苹果的体积:800-600=200ml=200cm3
(相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)
a
一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)
b
讨论题:
有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)
判断题
(容器的厚度不计)
a、
1.5×1。2×4。5
b、
1.5×1.2×6
c、
1.5×1.2×(6—4.5)
d、
1.5×1.2×(4.5+6)
2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)
a、
10×4÷(3×4)
b、
10×4×0.5÷4
c、
3×4×0.5÷(10×4)
d、
10×4×0.5÷(3×4)
深化练习:
从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)
h独立练习:
1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)
2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)
师:通过今天的学习,你有什么收获?
数学五年级教案篇七
通过观察和动手操作等教学活动,使学生初步学会简单的数据收集和对原始数据进行分类和的方法。
过程与方法
能根据收集到的数据完成相应的统计图表。
情感、态度与价值观
在学习过程中培养学生的合作意识和质疑问难的能力。
教学重点
收集数据的方法。
教学难点
数据收集和的方法.渗透实践第一的唯物主义观点。
教学准备
小黑板或投影片若干。
复习
教师用小黑板或投影片出示教科书上的复习题。请一名学生读题。
教师:我们在四年级已经学习过简单的数据收集和。现在大家回忆一下这部分知识,自己做这道题。
学生填统计表并在统计图上画出表示各种车辆数目的条形图。
复旧引新
以前我们学习过的是收集静止事物的数据。例如统计一个停车场里的各种机动车的数量。由于车辆是停着不动的,可以分类数出各种车辆的数量。但是,在实际工作中,我们要数据往往不是静止不动的,而是随着时间的变化不断发生变化的,这时就要采用另外的方法来收集和积累数据。
1.教师出示例1
同学们都知道一个路口每天要通过许多机动车。一般来说,在10分时间内,通过各种机动车是交替出现的,而不可能前面过的都是小汽车,接着全是大客车,然后再过载重车......在各种车辆交替通过的情况下,就需要逐个收集和积累各种车辆通过的数据。通常采用画“正”的方法来分别统计出各种车辆通过的数据。这时,先要写出需要数据名称。
怎样知道所要收集;的数据是多少呢?
请学生读题后,让同学们讨论一下这道题说的是什么意思,要求是什么。
学生每人拿出一张纸,写出上面各种机动车的名称。
学生数“正”字的个数,计。算出各种车辆的数目。教师将各种车辆的数据写在黑板上。
学生说一说所见过的用画“正”字法收集数据在日常生活中的应用,如选举时统计选票。
学生的回答。共同制成统计表。然后,在空白的统计表上填写摩托车和小汽车的辆数,再翻开教科书第2页,独立做在书上。
独立将条形统计图补充完整。
激发学生学习学兴趣,充分调动学生的学习积极性。
培养学生联系生活实际的习惯,方法,应用实际,达到学以致用的目的。
这张统计表的表头应该分多少栏?每栏有几个格?
2.做练习一的第2题。
教师用投影片出示题目,请学生读题后,教师提问:
3.做练习一的第3题。
学生读题后回答,独立填写统计表。
用画“正”字的方法记录实验结果。
学生翻开教科书自己读题,说一说五种农产品的产量各是多少,接着回答第(2)、(3)问。最后,让学生独立填写统计表。做完以后集体订正。
教学后记:大部分学生的学习积极性较高,能够掌握画正安字收集和数据的方法,并且会看统计表,会分析统计表中所说明的问题。个别学生基础差,练习中涉及到的简单问题不会回答,有待于辅导。
数学五年级教案篇八
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4.1教学过程
4.1.1教学活动
活动1【讲授】用数对确定位置
一、探讨描述位置两要素
师:今天,谢老师的好朋友带来一份神奇的礼物。有请x先生
第一关:找地鼠
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(x先生录音)
二、从列和行引出数对确定位置
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(x先生评价)
三、点子图中的位置表示
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出x先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?x表示几,y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)
五、拓展总结。
师:同学们我们还差一块拼图了,听听x先生带来了什么问题:第五关:确定位置,需要几个数?)
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听x先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
数学五年级教案篇九
教科书第1~2页的例1以及相关的练习。
1、理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。
2、培养学生的分析能力和归纳概括能力。
3、通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。
多媒体课件和视频展示台。
一、复习引入
师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗?多媒体课件展示:
等学生完成后,抽学生的作业在视频展示台上展示,集体订正。
二、教学新课
1?教学例1,理解单位“1”
师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。
师:同学们,你们能用小圆代替月饼,帮小华分一分吗?
等学生分好后,抽一个学生分的小圆在视频展示台上展示。
师:这时,小华的爸爸又提出了问题。
课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?
引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。
多媒体课件演示下面的月饼图:
引导学生理解两个1/4代表的数量不一样。
师:为什么会出现这种现象呢?
引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。
让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。
师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。课件出示第2页的熊猫图。
师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?
请分一分,并填空。
引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。
师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。
板书单位“1”的含义。
师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体?教师再举两个例子,深化学生对单位“1”的理解。
2?理解并归纳分数的意义
师:想想自己操作的过程,你能说一说什么是分数吗?
学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。
师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。
归纳并板书分数的意义,板书课题。
试一试:涂色部分占整个图形的几分之几?
师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。
生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。
3?说生活中的分数
学生说生活中的分数。
三、课堂小结
(略)
四、课堂作业
1?第4页课堂活动第2题。
2?练习一第1,2,3,4题。
分数的意义
师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?
课件出示如下的题目:
(1)把一个月饼平均分成4份,其中的1份是这个月饼的();
(2)把一张手工纸
数学五年级教案篇十
教学目标:
使学生明确小数连除、除加、除减的运算顺序与整数相同,能灵活地运用学过的定律和有关的规律进行简便计算。
教学重点:
教学过程:
一.1.口算:
0.1230.360.40.10.01
0.160.024.50.0338
0.040.50.750.1513
2.说说下列各式的运算顺序,并算出结果。
3.用简便方法算
13456035
二.新授
1.谈话引入
小数的连除、除加、除减的运算顺序和整数一样。(板书课题)
2.教学例10
(1)读题、审题、列式。
9.30.52.4
问9.30.15表示什么?再除以2.4又表示什么?
(完成板书)
:小数连除的运算顺序与整数相同,从左往右依次计算。
(2)练习第31页做一做(中)
做前先讨论:这两题是什么算式?有几步运算?先算什么?再算什么?后指名板演讲评。
3.在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。
(1)教学例11
出示例11,师问:怎样算简便呢?
学生小组讨论:得出把除数转化成是一位数的连除。(生讲师板书)
5.635
=5.675
=0.85
=0.16
:在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。(2)大家练第31页做一做(下)
4.全课:略
三.巩固练习
1.第32页2、3填入书本
2.课作:第1部分第4题
数学五年级教案篇十一
1、体会小数混合运算的运算顺序和整数是一样的,会计算小数四则混合(以两步为主,不超过三步)
2、利用学过的小数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。
3、培养学生善于探讨数学问题的良好习惯,能够综合问题的能力。
教学重点:
掌握小数四则混合运算的算法,会进行小数四则混合运算。
教学难点:
通过解决具体问题理解运算间的联系。
教学过程:
一、情境导入
师:前几天五年级同学对我们平时所产生的生活垃圾进行了调查研究,下面就是五年级两个班级的调查汇报情况。(课件出示教材情境图)
师:从这个调查汇报情况中你获得了哪些数学信息?
学生:五年级1班汇报信息:一个人4周可产生30.8千克生活垃圾。五年级2班汇报信息:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。
师:看到这些数学信息,你能提出哪些数学问题?引导学生根据不同的信息提出不同的数学问题。
二、探究新知
1、研究连除、乘除混合运算。
学生阅读题目后,教师提问:“要想求出一个人平均每天产生多少千克生活垃圾,需要什么书籍条件?题目中是否直接给出?用什么方法计算?”学生独立思考计算后,在小组内交流自己的想法。
小组汇报,学生可能会呈现的方法
一种方法:先计算4×7=28,算出四周一共多少天,再用30.8÷28算出平均一天产生多少垃圾。
另一种方法:先算每周产生多少千克垃圾,用30.8÷4=7.7,再用7.7÷7算出平均每天产生多少千克垃圾。
2、研究除、加混合运算。
学生独立完成,教师要引导列分步算式的同学试着列出综合算式,根据其中的数量关系,运算出结果。
3、总结规律
引导学生面容两题中的三个综合算式,再一次得出结论:小数四则混合运算的顺序与整数四则混合运算顺序相同,整数运算定律在小数运算中同样适用。
三、巩固练习
数学五年级教案篇十二
在数表里框出几个数、在墙面上贴瓷砖、选择连号的参观券或座位等实际问题,都可以和图形的覆盖现象联系起来。围绕覆盖了哪里、有多少个位置可以选择等问题进行研究,发现其中的规律,能感受数学是研究客观世界里的事物和现象的工具,进一步发展数学思考,培养乐于探索的。教材编排了两道例题,例1里的覆盖比较简单,覆盖的位置只有一个维度上变化。例2里图形的覆盖位置,在两个维度上变化。练习十运用例题里的方法和认识的规律,解决日常生活、数学游戏中的实际问题。
例1的教学从游戏开始。把1~10这十个数从左往右顺次排列,组成一张数表,游戏的方法是,用红框在数表里框数,分三次进行。第一次只框两个数,第二次要框三个数,第三次框更多个数。
第一次游戏,先框出数表左端的两个数1和2,算出它们的和是3。再任意移动红框的位置,可以看到各次框出的两个数都不会完全相同,因此两个数的和不可能相同。“一共可以得到多少个不同的和”提出了游戏里的数学问题,把教学的注意力集中到研究红框在数表中有多少个不同的位置。学生首先会想到第一种方法,随着红框从数表的左端逐渐移到右端,依次计算1+2=3、2+3=5……9+10=19,数数一共写了9个算式,得到9个不同的和。第二种方法有两个特点:一是对问题的理解十分准确。“一共可以得到多少个不同的和”这个问题,是问和的个数,不是问和是多少,所以不必进行求和计算。二是应用了图形平移的知识,通过红框从左往右依次平移一格得出了结果。其中,红框平移8次,能得到9个不同的和,是需要突破的难点。在第一种方法的基础上理解并使用第二种方法,学生数学活动的水平有了提升,也为继续进行的游戏和探索规律构筑了平台。
第二次游戏,红框每次框出三个数,和第一次游戏相比,有两点提高:一是只用平移的方法找答案。在前一次游戏中体会了平移是解决这类问题比较好的方法,在这次游戏中学生必然乐意应用这种方法。二是初步感知每次框出的数多,得到不同的和的个数少。这一感知一方面能在问题的答案上获得:每次框2个数,得到9个不同的和;每次框3个数,得到8个不同的和。另一方面能在平移的过程中体会:每次框的数少,红框平移的次数多,得出的和的个数多;每次框的数多,红框平移的次数少,得出的和的个数少。显然,通过这次游戏,学生对用平移方法解决问题的体验深了,为发现规律迈了坚实的一步。
第三次游戏,在同一张数表里,每次框出更多个数,如4个数、5个数,分别能得到几个不同的和?安排学生继续实验,并把数据都填入一张表格。有前两次操作的经验,这里可以根据自己的需要选择活动的方法。或是仍旧用红框逐次去框数,或是看着数表想像框的活动。
通过这次活动,对这类现象的感知得到进一步的充实,更清楚地看到,每次框的数的个数越多,红框平移的次数越少,得到的和的个数也越少,它们之间是有联系的。
得出规律是例题最关键的教学环节。带着教材里的两个问题逐行观察表格里的数,研究平移次数与每次框的数的个数之间的关系,以及得到不同和的个数与平移次数的关系,找到的共同特点就是这类现象的规律。平移次数与每次框的数的个数的关系,在表格中能看到的是:它们相加的和都是10(数表里有10个数)。由此推理,10减每次框的数的个数等于平移的次数。如果联想平移红框的操作,就能体会这个关系是合理的。如在数表左端框出3个数,数表里还剩7个数,红框还能向右平移7次。发现和的个数与平移次数的关系比较容易,表格里能看到平移的次数加1等于得到的和的个数,在几次操作活动中都有这一体会。发现的规律要用自己的语言,顺着填的表格,从左到右概括地讲述。如数表里有10个数,减每次框几个数等于平移次数,平移次数加1得到几个不同的和。看着表格讲述比较方便,关系清楚,也有助记忆。
“试一试”增加了数表里的数(从10个变成15个),“练一练”把数表换成正方形图案连成的花边。要求利用例题里的规律,说出几个问题的答案,在应用中进一步体会和巩固发现的规律。还要注意的是,“试一试”直接说出可以得到多少个不同的和,“练一练”直接说出有多少种不同的盖法,它们都没有问“平移多少次”。这是因为平移是解决这些问题的手段,平移次数是解决问题时应该主动思考的中间数量。
例2的素材是在墙面上贴瓷砖,每块瓷砖都是大小相同的正方形。4块花色瓷砖拼成正方形,组成一个图案。把这个图案贴在墙面任意一个位置,称为一种贴法。要解决的问题是图案在墙面上一共有多少种贴法?显然,图案在墙面上的位置,可以在同一行左、右移动,还可以在同一列上、下移动,这是例2比例1复杂的地方。但是,无论图案从左往右移动,还是从上往下移动,计算平移次数的方法与例1是一致的。所以,这道例题要以例1的规律为基础,构建稍复杂一些的规律。
首先是理解题意,激活相关的经验。示意图的墙面上贴了瓷砖,中间的4块组成一个图案。“把图案贴在这面墙的任意一个位置”引发想像,可以把图案贴高些,也可以贴矮些;可以把图案贴在墙面的左边,也可以贴在右边。经过交流和,得出两条线索,即教材呈现的两种思考。这两种方法都是把例1里获得的经验,应用到新的情境中。第一种方法想的是在一行上移动,和例1非常贴近,很快得出贴在最上面一行有7种贴法。第二种方法想的是在一列上移动,比例1稍有变化,所以贴在最左边一列有多少种贴法需要数一数或算一算。
然后小组讨论三个问题,这三个问题是逐步深入的。第(1)个问题需要的时间最多,把第一种一行有7种贴法和第二种一列有5种贴法结合起来,才能“既不重复又不遗漏”。这里不要急于得出一共有多少种贴法,要弄明白的是:如果一行一行地想,要从上到下想5行;如果一列一列地想,要从左到右想7列。第(2)个问题在理解题意时已经有了答案,这里再次讨论,是因为第一种方法讲的是最上面一行,第二种方法讲的是最左边一列,需要扩展到每一行都有7种贴法,每一列都有5种贴法。第(3)个问题是解决一共有多少种贴法以及它的算法。有前两个问题为基础,很容易想到一共有7×5=35(种)贴法,这个算式的数量关系就是沿着长的贴法、沿着宽的贴法与一共有的贴法之间的关系。
“试一试”和“练一练”都是例题的变式。“试一试”的图案虽然仍旧由4块瓷砖拼成,但拼法变成“凸”字形。把它贴到墙面上,求一共有多少种贴法,要把图案看成长方形。这一点可以通过教师演示或学生操作来理解。“练一练”在墙面上贴的是长方形瓷砖,有6块同样大小的长方形瓷砖拼成一个图案。求一共有多少种贴法的思考与计算,和贴正方形瓷砖相同,能再次体会一共有的贴法与沿墙面长的贴法、沿墙面宽的贴法之间的关系。
练习十第3题里有两类问题,一类是用“十”字形的框在数表里每次框出5个数,一共有多少种框法。解决这类问题,要把红框看成每次框出9个数的长方形。这一点,学生在“试一试”里已有初步的体会。另一类问题是研究每次框出的5个数的和与中间数的关系,只要通过几次框数活动,就能发现框里的5个数的和是中间数的5倍。中间的那个数是5个数的平均数。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
数学五年级教案篇十三
1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。
2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。
3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。
4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
培养学生思维的有序性。
抽象概括计算规律。
计数器,答题纸。
师:同学们,数学王国里有十个数字,它们是……
生:0、1、2、3、4、5、6、7、8、9。
师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。
出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?
师:问题提出来了,敢不敢迎接挑战?
生:敢!
师:谁来说说,你是怎么理解“没有重复数字的三位数”的?
生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。
师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。
1、解决问题:
(学生尝试解决问题)
师:同学们写完了,哪位同学愿意展示一下你的答案?
生:(投影仪展示)123,321,213,132,321。
师:还有其他的写法吗?
生:(投影仪展示)123,132,213,231,312,321。
师:两种写法,你认为哪一种更好?
生:第二种更好。
师:为什么?(学生茫然)同桌讨论一下。
生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。
师:观察第二种写法有重复或遗漏吗?
生:没有!
师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。
数学五年级教案篇十四
1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。
2、结合具体情境,进一步体会整数与部分的关系。
重点:理解整体1,体会一个分数对应的整体不同,所表示的具体数量也不相同。
难点:充分体会整数与部分的关系。
(一)复习旧知,导入新课
2、今天我们一起来学习《分数的再认识》。
(二)创设情境,学习新知
活动一:分笔游戏,体会单位一
1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)
2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。
3、另找4名同学检查。
4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)
5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)
活动二:教材p34说一说。
1、带着新的认识,我们来判断两个小朋友看的书一样多吗?
2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)
4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)
(三)巩固练习
1、教材p34画一画。
2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
四、板书设计
分数的再认识
整体不同,相同分数表示的数量也不同。
整体相同,相同分数表示的数量也相同。
五、教学反思
本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了平均分和体会整数与部分的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如印度洋海啸捐款一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。