作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
初中数学教案设计范例篇一
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;。
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;。
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;。
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议。
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的.概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
初中数学教案设计范例篇二
3.进一步培养学生分析问题和解决实际问题的能力;
1.一题多解,学会从多角度分析问题的能力;
2.初步体会数学建模的基本方法;
1.增强节约用水的意识;
2.体会数学来源于生活、来源于实践、又服务于实践,认识到学习数学的用处,增强学习的目的性和数学意识。
挖掘题目中的等量关系。
探究式。
一、创设情境,导入新课。
问题情境:
据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的,是世界人均占有量的.
(1)问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
小红家上月5日自来水表的读数为344米3,本月5日自来水表各指针的位置如图所示,这时水表的示数是_______米3,所以一个月来她家用去_______米3水(读数到米3即可),应缴纳水费元.
水费是由哪几个量决定的?(答:单价、用量)。
三者之间的关系:单价×用量=水费.
二、呈现问题,自主探究。
(一)水费问题。
问题:实行新的阶梯水价后你会计算自家的水费吗?
资料表明:“按照《北京市水价调整及阶梯式水价初步方案》,对于生活用水阶梯式水价价格级差拟采用1:3,即第一级水量价格为居民基本生活水价,第二级水量价格为居民基本生活水价的3倍,阶梯式水价的计量方法将按四口家庭核定水量基数,每人月均用水量3立方米,为了方便居民用水淡旺季自行调剂,实行阶梯式水价以后,每半年查一次水表.”
分析:阶梯式水价水费的计算,需要分别按不同的单价进行计算。单价分别为3.7元和11.1元.
解:(元)。
设上半年用水为x立方米,根据题意列方程,得。
解这个方程,得。
下半年用水为:(立方米)。
答:上半年用水97立方米,下半年用水70立方米.
说明:本题也可采用计算的方法直接得到结果.
分析:
单价数量(立方米)水费(元)。
未超部分1.2201.2×20。
超过部分2(x-20)2(x-20)。
平均1.5x1.2×20+2(x-20)。
水费应按两部分计算,即单价分别为1.2元和2元.
解:设他家这个月共用x立方米的水.
1.5x=1.2×20+2(x-20)。
x=32。
答:他家这个月共用32立方米的水.
(二)出租车计费问题。
例2:
分析:收空驶费了吗?即超过15千米吗?如何判断?
15千米收费:10+1.2×11=23.2(元)。
3423.2。
所以,超过了15千米.
总费用应分三段计费:(1)10元:4千米;(2)1.2×(15-4)=13.2元:11千米;(3)超过15千米部分的费用,单价1.8元.
解:设甲、乙的路程大约是x千米,由题意得,
10+1.2×(15-4)+1.2×(1+50%)(x-15)=34。
解这个方程得:x=25。
答:甲、乙两地的路程大约是25千米.
巩固练习:书p119/2。
三、提高拓展,发展创新:
围绕出租车计费的多种情况,学生分组进行编题并解答。
由学生利用投影进行展示,其他学生给与评价.
四、师生共同小结:
1.本节课我们共同研究的问题是什么?共同点是:由于单价的变化,必须要分段计算.
2.列一元一次方程解应用题的一般步骤是什么?
3.你的收获是什么?
五、作业:
整理分组编题及解答的笔记.
初中数学教案设计范例篇三
(一)认知目标:
1.了解二元一次方程组的概念。
2.理解二元一次方程组的解的概念。
3.会用列表尝试的方法找二元一次方程组的解。
(二)能力目标:
1.渗透把实际问题抽象成数学模型的思想。
2.通过尝试求解,培养学生的探索能力。
(三)情感目标:
1.培养学生细致,认真的学习习惯。
2.在积极的教学评价中,促进师生的情感交流。
1.二元一次方程组及其解的概念。
2.用列表尝试的方法求出方程组的解。
(一)创设情景,引入课题:
1.本班共有40人,请问能确定男女各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)。
(2)这是什么方程?根据什么?
2.男生比女生多了2人。设男生x人,女生y人,方程如何表示?x,y的值是多少?
3.本班男生比女生多2人且男生共40人,设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
(二)探究新知,练习巩固:
1.二元一次方程组的概念。
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3,
y+z=5,x=y+10,
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2.二元一次方程组的解的概念。
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,尝试求解:
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的'值,代到另一个方程尝试。
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业:
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数字时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
初中数学教案设计范例篇四
2、初步培养学生观察、分析和抽象思维的能力。
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式。
现代课堂教学手段。
启发式教学。
1、用代数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x-3)。
(3)乙数比x的倒数小7;(-7)。
(4)乙数比x大16%?((1+16%)x)。
(应用引导的方法启发学生解答本题)。
例1用代数式表示乙数:
(1)乙数比甲数大5;
(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;
(4)乙数比甲数大16%?
解:设甲数为x,则乙数的代数式为。
(1)x+5。
(2)2x-3;
(3)-7;
(4)(1+16%)x?
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则。
(1)2(a+b);
(2)a-b;
(3)a2+b2;
(4)(a+b)(a-b);
(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;
(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;
(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;
(4)这个数的平方与这个数的的和?
解:
(1)3(a+5);
(2)(a-1);
(3)(5a+7);
(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:
(1)m(m+6)个;
(2)(m)m个?
1、设甲数为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;
(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;
(4)甲乙的差除以甲乙两数的积的商?
2、用代数式表示:
(1)比a与b的和小3的数;
(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;
(4)比a除b的商的3倍大8的数?
3、用代数式表示:
(1)与a-1的和是25的'数;
(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;
(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕。
首先,请学生回答:
1、怎样列代数式?
2、列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:
(1)这个长方形另一边的长;
(2)这个长方形的面积?
§3.2代数式。
(一)知识回顾。
(三)例题解析。
(五)课堂小结。
例1、例2。
(二)观察发现(四)课堂练习练习设计。
由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。
初中数学教案设计范例篇五
1.进一步认识图形的轴对称,探索形成轴对称的本质特征。
2.在方格纸上画出一个图形的轴对称图形,初步学会运用对称的方法在方格纸上设计图案。
3.在欣赏图形变换所创造出的美过程中,感受对称在生活中的应用,体会数学的价值。
教学重难点。
[教学重点]探索形成轴对称图形的特征及画轴对称图形的方法。[教学难点]在作图中探索轴对称的本质特征。
教学过程。
一、创设情境,激发兴趣。
1、欣赏轴对称图形。
在我们生活中,有这样一些美丽的图形,你知道它们是什么吗?(播放轴对称图形)。
学生观察欣赏。
2、你们知道它的对称轴在哪里吗?你还见过哪些轴对称图形?
(1).轴对称图形的意义:。
(2).这类图形有什么共同的特征?
3、小结:
(1)如果一个图形沿着一条线对折,两侧的图形能够完全重合,这样的图形就是轴对称图形。
(2)折痕所在的直线就是轴对称图形的对称轴。
下面哪些图形是轴对称图形。
4、激发兴趣,引出课题。
看看说说,下面哪些图形是轴对称图形。
哪大家想不想把这么美的图形画下来呢?这节课我们一起来研究学习“轴对称”。
5、(板书揭题:轴对称)。
指出下列轴对称图形的对称轴,每个轴对称图形的对称轴有几条?
二、自主探究,掌握新知。
【设计意图:激发学生兴趣,引导学生的自主学习。】。
2.数一数?
把图形标上几个点,它们和对称轴有没有什么关系?你们看一看有什么发现?(课件出示a,a’、b,b’、c,c’)。
先在小组内和同桌说一说。
汇报交流:a、点a和a’到对称轴的距离都是2小格,点b和b’到对称轴的距离都是3小格,点c和点c’到对称轴的距离都是5小格。b、点a和点a’连起来和对称轴是垂直关系,点b和点b’连起来点c和点c’连起来都和对称轴是垂直关系。
小结:a、点a、b、c在数学上叫它原点,点a’、b’、c’叫它对应点。b、原点和对应点到对称轴的距离都相等,它们的连线和对称轴成垂直关系。
3.画一画。
拿出方格纸,动手画一画。
小结方法:首先,要先标好原点,再找出原点的对应点。再画出连线。
4.剪一剪动手剪一剪课本p4的做一做,小组同学合作,先猜一猜,再剪一剪,看谁剪得又快又好。
【设计意图:通过操作让学和加深体会,进一步掌握轴对称图形的知识。】。
1、你生活周围有哪些物体的面是轴对称图形?
(长方形、正方形、等边三角形、等腰三角形、等腰梯形、圆形、平行四边形等)平面图形让学生辨认哪些是轴对称图形,并找出对称轴。着重让学生辨析平行四边形,并画图说明理由。
【设计意图:加深理解轴对称的平面图形,体会轴对称图形的本质特征。】。
2、你会画出下列轴对称图形的对称轴吗?
拿出方格纸,根据今天的学习内容,设计一个美丽的图案。
把自己的作品展示给大家看,并说一说你是如何设计?(把学生的作品贴在黑板上)。
3、判断:下面的数字哪些是轴对称图形?它们分别有几条对称轴?
4、判断:下面的字母哪些是轴对称图形?它们分别有几条对称轴?
6、开心测试:
7.拓展题。
(1)、推理:根据自己发现的规律,画出下一个图形的形状?
【设计意图:应用轴对称的知识,创造、体会数学的美】。
四、总结提高,延伸感受。
五、作业设计。
用轴对称知识设计一幅题为“美丽的房子”的作品。
板书设计:轴对称。
初中数学教案设计范例篇六
知识与技能:
1.能说出列一元一次方程解应用题的一般步骤;
2.会列一元一次方程解决水费和出租车计费问题;
3.进一步培养学生分析问题和解决实际问题的能力;
过程与方法:
1.一题多解,学会从多角度分析问题的能力;
2.初步体会数学建模的基本方法;
情感态度价值观:
1.增强节约用水的意识;
2.体会数学来源于生活、来源于实践、又服务于实践,认识到学习数学的用处,增强学习的目的性和数学意识。
构建“数学模型”,并列出一元一次方程解应用题。
挖掘题目中的等量关系。
探究式。
一、创设情境,导入新课。
问题情境:
据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的,是世界人均占有量的.
(1)问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
小红家上月5日自来水表的读数为344米3,本月5日自来水表各指针的位置如图所示,这时水表的示数是_______米3,所以一个月来她家用去_______米3水(读数到米3即可),应缴纳水费元.
水费是由哪几个量决定的?(答:单价、用量)。
三者之间的关系:单价×用量=水费.
二、呈现问题,自主探究。
(一)水费问题。
问题:实行新的阶梯水价后你会计算自家的水费吗?
资料表明:“按照《北京市水价调整及阶梯式水价初步方案》,对于生活用水阶梯式水价价格级差拟采用1:3,即第一级水量价格为居民基本生活水价,第二级水量价格为居民基本生活水价的3倍,阶梯式水价的计量方法将按四口家庭核定水量基数,每人月均用水量3立方米,为了方便居民用水淡旺季自行调剂,实行阶梯式水价以后,每半年查一次水表.”
分析:阶梯式水价水费的计算,需要分别按不同的单价进行计算。单价分别为3.7元和11.1元.
解:(元)。
设上半年用水为x立方米,根据题意列方程,得。
解这个方程,得。
下半年用水为:(立方米)。
答:上半年用水97立方米,下半年用水70立方米.
说明:本题也可采用计算的方法直接得到结果.
分析:
单价数量(立方米)水费(元)。
未超部分1.2201.2×20。
超过部分2(x-20)2(x-20)。
平均1.5x1.2×20+2(x-20)。
水费应按两部分计算,即单价分别为1.2元和2元.
解:设他家这个月共用x立方米的水.
1.5x=1.2×20+2(x-20)。
x=32。
答:他家这个月共用32立方米的水.
(二)出租车计费问题。
例2:
分析:收空驶费了吗?即超过15千米吗?如何判断?
15千米收费:10+1.2×11=23.2(元)。
3423.2。
所以,超过了15千米.
总费用应分三段计费:
(1)10元:4千米;
(2)1.2×(15-4)=13.2元:11千米;
(3)超过15千米部分的费用,单价1.8元.
解:设甲、乙的路程大约是x千米,由题意得,
10+1.2×(15-4)+1.2×(1+50%)(x-15)=34。
解这个方程得:x=25。
答:甲、乙两地的路程大约是25千米.
巩固练习:书p119/2。
三、提高拓展,发展创新:
围绕出租车计费的多种情况,学生分组进行编题并解答。
由学生利用投影进行展示,其他学生给与评价.
四、师生共同小结:
1.本节课我们共同研究的问题是什么?共同点是:由于单价的变化,必须要分段计算.
2.列一元一次方程解应用题的一般步骤是什么?
3.你的收获是什么?
五、作业:
整理分组编题及解答的笔记.
初中数学教案设计范例篇七
教学目标:
1.继续学习课文,了解卢沟桥的特点。
2.揣摩学习本文说明语言特点,弄清本文说明的方法。
3.进一步了解中国石拱桥的特点,激发对桥梁研究的兴趣。
教学重点:
同教学目标1、2。
教学难点:。
同教学目标2。
教学过程。
一、复习检查。
1、默写生字词。
巧妙绝伦和谐惟妙惟肖匀称推崇古朴弧形。
2、指名说出赵州桥的特点及说明顺序。
二、指导学习研讨。
阅读课文6—9节,探讨下列问题。
1、卢沟桥是个联拱石桥,和赵州桥一样,是我国最著名的石拱桥呢,它有哪些特点?
样说明的?
3、我国石拱桥为什么会取得这样光辉的成就呢?三个原因中哪个是最主要的?为什么?
4、朗读第10段,思考:
揣摩本文语言特点,列出课文中用词准确的句子,说说括号里词语的作用。
1.《水经注》里提到的“旅人桥”,(大约)建成于公元282年,(可能)是有记载的最早的石拱桥了。(“大约”“可能”都表示不确定,只是推测的情况“有记载的”使发言的.根据增加可靠性)。
2.我国的石拱桥(几乎)到处都有。(“几乎”强调了石拱桥分布范围很广,但并不排除有的地方没有石拱桥的可能。)。
3.石拱桥在世界桥梁史上出现得(比较)早。(“比较早”程度较轻,这样表达比较稳妥。)。
符合实际情况。)弄清本文说明方法。
请生速读课文,思考文章在说明中国石拱桥特点时运用了什么方法?举例说明。例如:
1、说明赵州桥及卢沟桥的长、宽、高时采用了列数字方法。
2、说明赵州桥及卢沟桥的形式时,分别采用了引用、打比方、摹貌方法。
3、说明赵州桥及卢沟桥的特点时,分别采用了列数字、作诠释、举例子等方法。
4、用赵州桥和卢沟桥来说明石拱桥的特点是举例子的说明方法。
三、布置作业。
1、完成课后练习二。
2、阅读下列文段,回答文后问题。
“赵州桥非常雄伟,全长50.82米,------。桥的主要设计者李春就是一位杰出的工匠,在桥头的碑文里还刻着他的名字。”
(2)这段文字的说明对象是什么?
(3)揭示这段文字中心的句子是_____________________________。
(4)这段文字的说明顺序是_____________________________。
(5)文中“这个创造性的设计”是指什么?
初中数学教案设计范例篇八
钱毛管实验。
由于时间关系,先演示抽了真空的钱毛管实验,此时内部空气相当稀薄,轻羽毛和重铁片几乎同时着地,再让管中充满空气,羽毛后着地,通过分析得出如果没有空气阻力的影响,物体下落快慢程度一样。
(设计意图:通过自主实验探究,一方面让学生运用控制变量法分析研究实际物理问题,知道探究方法与步骤,另一方面让学生分工合作,充分发挥不同学生的优点,逐步培养学生的团结合作精神和协作意识,激发他们学习物理的兴趣。)然后,运用多媒体展示“钱毛管”中(真空环境中)铁片和羽毛的下落的录像,并用慢动作播放。
(设计意图:由于在“牛顿管”中物体下落快,学生难以观察,而且普通高中实验室中牛顿管大多不精确、演示效果较差,不便于全体学生观察、分析、得出正确结论,而借助多媒体(动画视频)可以让全体学生更加直观的看到羽毛和铁片同时下落,加深学生的感性认识。这样,结合图像、视频,更易于学生理解掌握。)。
接着展示在真空中拍摄的苹果和羽毛的频闪照片,再次证实如果没有空气阻力的影响,物体下落快慢一样。教师引导学生分析出真空中物体只受重力,并且初速度为0。
(设计意图:自然地引出自由落体运动的定义)。
(三)再现伽利略对自由落体运动规律的探究之路。
(设计意图:让学生科学探究的一般过程,处理事情时能善于抓住主要因素,忽略次要因素。)。
(四)探究自由落体运动的加速度。
对于自由落体加速度(重力加速度)的理解,除了利用频闪照片初步确定其大小外,我们还采用多媒体展示“地球不同纬度的重力加速度”图表的形式,让同学通过观察图表,分析总结出重力加速度随纬度变化的规律。
(五)小结。
(设计意图:之前得出各个结论比较零散,学生印象并不深,不能突出本节的教学目的和重点,可通过小结归纳出本节的重点内容)。
(六)应用巩固。
利用自由落体运动的相关规律估测南高教学楼的高度。(设计意图:让学生灵活运用自由落体运动规律分析解决实际问题,培养学生科学的思维方式,让学生感受到物理就在我们的身边)。
初中数学教案设计范例篇九
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来,数学教案-列代数式。
2.初步培养学生观察、分析和抽象思维的能力。
3.通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
教学建议。
1.教学重点、难点。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
教学设计示例。
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;。
2.初步培养学生观察、分析和抽象思维的能力.
教学重点和难点。
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
1庇么数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x-3)。
(3)乙数比x的倒数小7;(-7)。
(4)乙数比x大16%((1+16%)x)。
(应用引导的方法启发学生解答本题)。
二、讲授新课。
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。
解:设甲数为x,则乙数的代数式为。
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x。
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x。
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积。
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。
解:设甲数为a,乙数为b,则。
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)。
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数。
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2。
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。
分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a。
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:(1)m(m+6)个;(2)(m)m个。
三、课堂练习。
1鄙杓资为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。
2庇么数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。
3庇么数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄。
四、师生共同小结。
首先,请学生回答:
1痹跹列代数式?2绷写数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业。
1庇么数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2币阎一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究。
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)。
7.章建跃:教学设计与好数学教学。
8.小学数学《数学广角――植树问题》教学设计。
初中数学教案设计范例篇十
幼儿园教案中的设计意图怎么写?下面是几篇幼儿园数学教案设计,供大家阅读参考。
小班幼儿还处于具体形象思维,对形状的认识需要直观具体的方法,我们班的孩子对情景游戏十分感兴趣,因此,我设计的数学活动是以一个故事为线索,让孩子马上进入环境中去,提高他们参与活动的积极性。在设计的过程中,最后一个看望小兔的环节,本来是想不用真的小朋友,而用录音代替,但考虑到幼儿活动的兴趣,就请大班的一个孩子来做小兔,增加趣味性。
活动名称及内容:数学—有趣的图形。
教学目标:
1、巩固对正方形、三角形和圆形的认识,知道图形的特点。
2、喜欢动手,乐于参加数学活动。
活动重点:巩固对正方形、三角形和圆形的认识,知道图形的特点。
活动难点:喜欢动手,乐于参加数学活动。
活动准备:
1、图片一幅、纸制小路。
2、小白兔头饰一个,内装有形状不同的几何图形多个的“魔术箱”一个。
活动过程:
一、以故事形式,引出主题。
1、讲故事引起幼儿的兴趣。
师:小朋友,昨天小白兔打电话给老师,它对老师说:“昨天,森林里刮起了大。
2、出示图片,提问:
师:你们看,老师把房顶盖成什么形状的?房身呢?门又是什么形状呢?等一系列问题引导幼儿说出三角形、正方形和圆形。
二、巩固对三角形、正方形、圆形的认识。
师:小朋友真聪明,全都答对了,今天老师跟小朋友复习这些图形。
1、出示“魔术箱”
九月开学季,老师你们准备好了吗?幼教开学准备小学教师教案小学教师工作计划初中教师教案初中教师工作计划师:小朋友,你们看,老师从魔术师那里借来了魔术箱。今天老师就要为小朋友表演魔术,你们可要仔细地看哟!
2、提问。
三、做游戏—给小兔家铺路。
2、摆出各种形状不同的几何图形。
师;小朋友,你们看到了吗?这里有很多不同的形状,请你们把圆形材料放进圆。
形的坑里,把三角形材料放进三角形的坑里,把正方形材料放进正方形的坑里,直到把坑全铺平!
3、幼儿操作,要求幼儿根据坑的形状、大小寻找相应的材料。
四、结束部分。
让幼儿扮小兔跳,沿着铺好的路去探望受伤的小白兔。
中班数学《比高矮》教学设计。
引导幼儿比较两种物体的高矮,懂得高与矮的比较是相对的。培养幼儿比高矮的兴趣,发展他们的逻辑思维能力。
活动准备:
1.悬挂气球,同样大小的红色、绿色大长方体积木各一块,两张小鸡和小鸭图片,一把贴绒小椅子。
2.每人一份高矮不同的材料:红色、绿色的小长方体积木、圆柱体积木各若干,木珠若干,大小不同的量杯各一个,套管、盘子各一个。
活动过程:
集体活动:
1.谁拍到了气球。
请甲乙两名幼儿来拍悬挂着的气球,可看到甲拍到了气球,乙却拍不到。
2.与同伴比高矮。
幼儿两两组合比高矮,讲出谁高、谁矮或两个人一样高。自由交换伙伴再比,可多次进行。
3.比用具。
4.比积木。
教师出示红色、绿色长方体大积木各一块,变换摆放方法,让幼儿观察比较:两块积木平放——一样高;红积木竖起来,绿积木平放——红高绿矮;红积木平放,绿积木竖起来——红矮绿高。教师拿掉红积木,问:绿积木是高还是矮?由此使幼儿懂得了一种物体不能比出高矮,两种或两种以上的物体之间才能比出高矮来。
分组操作:
幼儿人手一份高矮不等的材料进行比较。
1.让幼儿用同样方法将相同数量的小长方体积木在桌子上搭高。
2.让幼儿将相同数量的木珠穿入套管,再插在凸钉盘上,相互比高矮。
3.让幼儿将大小不同的两只量杯比高矮。
4.请幼儿把6块红圆柱体积木搭在一起,再把5块绿圆柱体积木搭在一起,然后比一比。
演示游戏:
教师出示小鸡、小鸭的图片玩游戏。
鸡从椅子上取下来与小鸭比,使幼儿懂得比高矮必须在同一平面上。延伸活动:
教师让幼儿到操场上去找任何一种物体与自己比高矮。如,让幼儿比过后说,我和大树比,树高我矮;我和栏杆比,我高栏杆矮。教师提醒幼儿要站在同一平面上做比较。
教师请幼儿回家后和爸爸、妈妈分别比高矮,如果小朋友和爸爸、妈妈三个人一起比高矮,该怎样比?把比的方法告诉大家。
“分类”是数学活动中的一个重要内容,在日常生活中也经常要运用。比如:超市里物品的摆放、图书馆里的图书的摆放、家中整理房间等等都要运用到有关的分类知识。新《纲要》中指出要让幼儿从生活和游戏中感受事物并体验到数学活动的乐趣和重要性。为了将枯燥、逻辑性较强的数学知识变得生动、浅显易懂,并能融入孩子们感兴趣的操作活动中去,我设计了本次活动。整个活动以孩子们熟悉的火车为活动题材,将“为货运火车装运货物”的游戏贯穿始终。活动中,让孩子们主动探索、尝试操作,在玩、试、想、做、议中不断发现问题,解决问题,从而获得有关分类的经验。从而发展幼儿的合作、协商、操作能力,让幼儿充分体验到数学的重要性和有趣性。
活动目标:
1、鼓励幼儿尝试探索“分类装货物”的方法。
2、发展幼儿的合作、协商能力和倾听能力。
3、体验数学活动的乐趣,分享成功的喜悦和快乐。
活动准备:
1、知识准备:幼儿对火车已有初步的感性认识。
2、材料准备:16块火车外形的底板,各种货物卡片,各种图形片;碟片一张。
活动过程:
一、创设活动情境,激发幼儿活动的兴趣。
1、观看cd,让幼儿观察、了解火车分为客运火车和货运火车两种。
“小朋友,看,我们来到了哪儿?”
2、“五一劳动节刚过,装运货物的工人叔叔们又开始繁忙地工作了,他们想请我们小朋友帮忙,一起装运货物。”
二、操作活动。
1、幼儿分组合作,第一次尝试装运货物。
请幼儿观察认识各种物品,初步感性认识“分类”。
请幼儿尝试装运货物,并为车厢设计标记。
活动要求:幼儿四人一组,分配角色,协商讨论选出小组负责人及操作结果汇报。
员。
汇报操作结果。
2、第二次尝试装运货物。
幼儿尝试装运货物,并为每节车厢设计标记。
活动要求:首先完成两节车厢的操作任务,在验货认可之后将列车放回货场后方能操作三节车厢的操作。
请个别幼儿讲一讲:你们是怎样摆放的?
3、幼儿集体合作装运货物。
出示一列大火车。
“现在,我们要把这些木材分别运送给三位客人。第一位客人,他要红色的木材;第二位客人,他要圆形的木材;第三位客人,他要的是大的木材。请你们想一想,该怎样摆放这些木材?”
请幼儿自己检验“劳动成果”,体验成功的喜悦和快乐。
三、活动延伸。
1、小结集体操作情况,发现交集分类的现象,为下次活动打基础。
2、幼儿开着火车出活动室,结束活动。
活动反思:这些图形是幼儿平时经常接触的图形,是幼儿比较熟悉的。要求幼儿通过比较分辨出每组图形的不同之处并进行分类,总的来说,孩子的表现还是比较不错的,幼儿对分类没有困难,只有稍部分幼儿还不能自行做好图形标记。活动后,我们都觉得可在此基础上适当增加难度,让孩子按物体的两个特征进行分类。
初中数学教案设计范例篇十一
代数式:有理式,无理式,整式,分式和根式。
根式:是指含有开方运算的算式或代数式。
整式:是指没有除法运算,或有除法运算但除式中不含字母的.有理式。
分式:是指有除法运算,而且除式中含有字母的有理式。
无理式:是指有开方运算,而且被开方数含有字母的代数式。
有理式:是指没有开方运算,或有开方运算但被开方数不含字母的代数式。
初中数学教案设计范例篇十二
从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。
从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。
教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。
案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。
——真实性:案例必须是在课堂教学中真实发生的事件;
——典型性:必须是包括特殊情境和典型案例问题的故事;
——浓缩性:必须多角度地呈现问题,提供足够的信息;
——启发性:必须是经过研究,能够引起讨论,提供分析和反思。
从文章结构上看,数学案例一般包含以下几个基本的元素。
(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。
(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。
(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。
(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。
(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。
新课程理念下的初中数学教学案例,可从以下六方面选择主题:
(1)体现让学生动手实践、自主探究、合作交流的教学方式;
(4)体现数学与信息技术整合的教学方法;
(5)体现教师在教学过程中的组织者、引导者与合作者的作用;
(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。
初中数学教案设计范例篇十三
(一)认知目标:
1.了解二元一次方程组的概念。
2.理解二元一次方程组的解的概念。
3.会用列表尝试的方法找二元一次方程组的解。
(二)能力目标:
1.渗透把实际问题抽象成数学模型的思想。
2.通过尝试求解,培养学生的探索能力。
(三)情感目标:
1.培养学生细致,认真的学习习惯。
2.在积极的教学评价中,促进师生的情感交流。
1.二元一次方程组及其解的概念。
2.用列表尝试的方法求出方程组的解。
(一)创设情景,引入课题:
1.本班共有40人,请问能确定男女各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)。
(2)这是什么方程?根据什么?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
(二)探究新知,练习巩固:
1.二元一次方程组的概念。
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3,
y+z=5,x=y+10,
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2.二元一次方程组的解的概念。
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,尝试求解:
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。 (2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业:
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
初中数学教案设计范例篇十四
教学案例是教师在教学过程中,对教学的重点、难点、偶发事件、有意义的、典型的教学事例处理的过程、方法和具体的教学行为与艺术的记叙,以及对该个案记录的剖析、反思、总结。案例不仅记叙教学行为,还记录伴随行为而产生的思想,情感及灵感,反映教师在教学活动中遇到的问题、矛盾、困惑,以及由此而产生的想法、思路、对策等。它既有具体的情节,过程,真实感人,又从教育理论、教学方法、教学艺术的高度进行归纳、总结,悟出其中的育人真谛,予人以启迪。可以说,教学案例就是关于某个具体教学情景的故事,既有故事发生背景,又有故事发展情节。在叙述这个故事的同时,常常还发表一些自己的看法——点评。所以,一个好的案例,就是一个生动、真实的故事加上精彩的点评。
一、教学案例的特点。
1、案例与论文的区别。
从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。
从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。
2、案例与教案、教学设计的区别。
教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。
3、案例与教学实录的区别。
案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。
4、教学案例的特点是:
——真实性:案例必须是在课堂教学中真实发生的事件;。
——典型性:必须是包括特殊情境和典型案例问题的故事;。
——浓缩性:必须多角度地呈现问题,提供足够的信息;。
——启发性:必须是经过研究,能够引起讨论,提供分析和反思。
二、数学案例的结构要素。
从文章结构上看,数学案例一般包含以下几个基本的元素。
(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。
(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。
(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。
(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。
(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。
新课程理念下的初中数学教学案例,可从以下六方面选择主题:
(1)体现让学生动手实践、自主探究、合作交流的教学方式;。
(4)体现数学与信息技术整合的教学方法;。
(5)体现教师在教学过程中的组织者、引导者与合作者的作用;。
(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。
上述诸方面是新课程理念中强调和倡导的,有些方面传统教学中虽有涉及,但经验不多,而有些是全新的,需要实践中探索、积累,更需要案例。