当前位置:网站首页 >> 作文 >> 2023年分数的基本性质教学设计及反思 分数基本性质教学设计(优秀10篇)

2023年分数的基本性质教学设计及反思 分数基本性质教学设计(优秀10篇)

格式:DOC 上传日期:2023-12-02 11:17:14
2023年分数的基本性质教学设计及反思 分数基本性质教学设计(优秀10篇)
时间:2023-12-02 11:17:14     小编:雁落霞

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

分数的基本性质教学设计及反思篇一

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。

:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

:理解和掌握分数的基本性质,会运用分数的基本性质。

ppt课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

一、故事导入激趣引思。

引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。

生发表见解。

二、自主合作探索规律。

1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!

2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视。

4、全班汇报。

5、反思规律看书对照找出关键词要求重读共同读。

6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

三、自学例题运用规律。

生自学。

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化。

1、判断对错并说明理由。

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数。

4、对对碰与1/2,2/3,3/4生生组组师生互动。

五、课堂小结课堂作业。

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

分数的基本性质教学设计及反思篇二

1、例2。教材简析:

12、24、48、816有序地排列起来,能从中得到许多感受。

2、4、8,还可以是3和其他的数。这样,对分数基本性质的感受就更丰富了。

第三步概括两道例题中分子、分母变化但分数大小不变的规律。在充分交流之后,阅读教材里的叙述,理解“同时”乘或除以“相同”的数这些规范的语言,知道这个规律叫做分数的基本性质。联系除数不能是0,明白分数的分子、分母同时乘或除以的数不能是0,使得到的规律更严密。

在得出分数的基本性质后,教材还安排了两项活动:一是根据分数的基本性质写出一组分数,要先任意写一个分数,再把它的分子、分母同时乘或除以相同的数,得到大小不变的分数。二是用整数除法中商不变的规律说明分数的基本性质,由于除法里的被除数和除数分别相当于分数的分子和分母,所以除法中商不变的规律和分数的基本性质是一致的。教学目标:

1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。

2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”数学思想方法。

3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。教学难点:自主探究出分数的基本性质教具准备:

一、故事激趣。

话说唐僧带着三个徒弟去西天取经,一路斩妖降魔,历经磨难。这一天,他们师徒四人走得又累又饿,正好路过一个村庄,师傅让悟空到村里花点斋饭,悟空去了不一会,化来三块同样大小的饼。唐僧说:我准备将第一块饼,平均分成三份,其中一份分给八戒;将第二块饼平均分成六份,其中的二份分给沙僧;将第三块饼平均分成九份,其中的三份分给悟空,你们同意这样的分配方法吗?师父的话音刚落,猪八戒便跳出来说:“师父,您也太偏心了,凭什么猴哥吃那么多,有三小块,而我却吃那么少,才一小块。我不同意,不同意!”

二、合作探索,寻找规律。

1、教师组织,引发探究。

生1:不对,因为三个人分得一样多。生2:不一样多。

师:我们一起来看一看,出示三个饼平均分的情况。教师边说边写出三个分数。师:同学们,老师在你们的课桌上都放有三个同样大小的圆形纸片,同学们就把它当作三块饼,请你们分小组合作,由组长扮演师傅。另外三个扮演徒弟,并且,用剪刀试着分一分,比一比,看一看八戒说的对不对。同学们在分的时候,一定要注意是不是按照上面说的方法分的。

师:从刚才的活动中我们可以看出三个人分得的饼怎么样?一样多。其实唐僧并没有偏心,猪八戒、沙和尚和孙悟空三个人分的饼一样大。

既然三个人分得的饼同样多,那么这三个分数的大小是不是有这样关系呢?虽然分数的分子和分母都不一样,但分数的大小是一样的。比校这三个分数想一想,分数的分子和分母是怎样变化的呢?这种变化有什么规律,才使得分数的大小不变?2.归纳性质。

引导口述:的分子、分母都乘以3,得到,分数的大小不变。板书:

(3)根据这两个等式,想一想分子、分母是怎样变化,分数的大小才不变的?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母同时乘以相同的数,分数的大小不变。

(4)反过来,从右往左看,分析比较分数的分子和分母又是按照什么规律变化的?要求让学生完成板书:

得出:分数的分子和分母同时除以相同的数,分数的大小不变。

你认为这句话中,哪些词比较重要,找出来。相同的数可以上哪些数呢?可以吗?

生:不行,因为0不能做除数,0不能做分母。

所以要加上“0除外”这样才完整,我们把这句话齐读一下。要求关键的字词要重读。

【设计意图:新知识力求让学生主动探索,逐步获取。“唐僧分饼”得出的一组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,通过判断让学生找出性质中关键的字、词,如“同时”、“相同的数”、“零除外”等。帮助学生一步步走向结论。】师:当分数的分子和分母同时乘或除以相同的数(0除外)分数的大小不变。由此证明了我们这种判断是正确的。这就是分数的基本性质。

3、教学例2,验证规律。

把一张正方形的纸对折,用涂色表示出它的。你能通过继续对折,每次找出一个和相等的分数吗?学生动手操作。

思考:每次对折后,长方形纸被平均分成了多少份?涂色部分有几份,可以用什么分数表示涂色的部分。这些分数相等吗?它们的分子和分数都是怎样变化的?质疑。

三、分层练习,巩固深化。1、完成“练一练”中的题目。

2、判断(手势表示,并说明理由。)。

(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。()(2)把的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()(3)的分子乘以3,分母除以3,分数的大小不变。()4、练习十一第1题。

四、课堂小结。

这节课我们学习了什么?你有什么收获?你认为分数的基本性质有什么作用?能运用分数的基本性质把一个分数化成分母相同而大小相等的分数。

五、课堂作业。

教科书练习十一第2、3题。教后反思:

徐春梅的个人信息:

学校:赣榆县青口镇第三中心小学。

电话:***。

分数的基本性质教学设计及反思篇三

1、例2.教学目标:1知识与技能目标:

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、过程与方法目标:

(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。

(3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。

3、情感态度与价值观目标:

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。

教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:

师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。

生:公平,其实他们分得一样多。

师:到底你们的猜想是否正确呢?让我们来验证一下!

二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)。

师:(读要求)现在开始.(学生汇报)师:你们发现了什么?

生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)。

生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)。

2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的'分子和分母变化了,但分数的大小没变。

师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。

生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。

师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。

(出示课件)。

小组汇报:(归纳规律)。

师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。

师:同时乘。

6.8呢?生:不变。

师:那你们能不能根据这个式子来总结一下规律呢?

生1:一个分数的分子和分母同时乘相同的数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......

师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。

生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。

生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)。

师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。

师:同时除以。

6.8呢?生:不变。

师:那你们能不能根据这个式子来总结一下规律呢?

3、强调规律。

师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)。

生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。

生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。

生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。

师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。

师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)。

师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)。

师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)。

师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)。

生:(读题,用手势表示对、错,并说出原因)。

生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。

师:(巡视)请一名学生说出答案,(生说,师出示答案)。

师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。

师:除法里商不变的性质是怎么说的?

生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。

小组讨论。

师:哪一组把讨论的结果汇报一下。

生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)。

师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)。

师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)。

师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:

师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果。

师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!

分数的基本性质教学设计及反思篇四

教学目标:

1.使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2.培养学生观察、分析和抽象概括能力。

3.渗透“事物之间是相互联系”的辩证唯物主义观点。

教学过程:

一、创设情境。

2.说一说:

(1)商不变的性质是什么?

(2)分数与除法的关系是什么?二、故事激趣、揭示课题。

剪一剪,比一比,想一想。

三、探索研究。

1.动手操作,形象感知。

(1)折请同学们拿出三张同样大的圆形纸,把每张纸都看作单位“1”。用手分别平均折成2份、4份、8份。

(2)画在折好的长方形纸上,分别把其中的2份、4份、8份画上阴影。

(3)剪把长方形中的阴影部分剪下来。

(4)比把剪下的阴影部分重叠,比一比结果怎样。

把涂色的部分用分数表示出来教师把下面的纸条帖在黑板上。

2.观察比较、探究规律。

(1)通过动手操作,谁能说一说故事的猴甲、猴乙、猴丙各分了饼的几分之几?

(2)你认为它们谁分的多?

引导学生得出:==。

(4)这三个分数的分子、分母都不相同,为什么分数的大小却。

1224。

36。

相等呢?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题。

(5)学生汇报讨论情况。

(6)启发点拨。

通过从左到右的观察、比较、分析,你发现了什么?

234612。

122。

=224。

(板书)。

把平均分的份数和表示的份数都乘以4,就得到,=(板书)。

引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

那么从右往左看呢?

2

引导学生观察明确:

4

36。

1236121?33。

=236。

2412。

的分子、分母同时除以。

12。

1

2,得到。

23。同理,6的分子、分母同时除以4,也可以得到。

板书:=24。

2242。

=12363=31。

=632。

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

4.运用规律、自学例题。

(1)独立思考:

(2)学生汇报讨论情况。

(3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。

四、课堂作业。

15。

1?2。

2

2???39。

88???2??16?612?71????7412361???28。

28??2??

426。

2.在下面各种情况下,怎样才能使分数的大小不变呢?

(1)把的分母乘以5;

(2)把812的分子除以4;

(3)一个分数的分母缩小3倍;

(4)一个分数的分子扩大2倍。3.判断。

(1)38。

=3?3。

833?3。

(2)4=4?45。

5?5(3)15。

=15?5(4)1010?214=。

14?2(5)接力:1/2=8/12=3/4=10/50=五、课堂小结。

1.这节课我们学习了什么内容?2.什么是分数的基本性质?

()。

分数的基本性质教学设计及反思篇五

1、了解分数的产生,让学生理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。

2、学生能掌握单位“1”平均分成若干份,表示其中一份或者几份的数,叫分数。

3、能用分数表示部分与整体的关系。

4、学生能知道某一个量是整体的几分之几。

情感态度与价值观:体会数学在日常生活中的应用。

使学生理解“分数”的意义,弄清分母,分子及分数单位的含义.

使学生理解“分数”的意义,弄清分数单位的含义.

课件。

一、板书课题:同学们今天我们一起来学习分数的意义。

二、揭示目标:这节课的目标是什么呢?请看:(出示学习目标),这个目标能当堂达到吗?:

1、什么情况下用分数表示。

2、分数四分之一表示什么。

3、什么叫单位“1”

4、什么是分数单位?

五分钟后比一比,谁自学最认真,谁能做对检测题。

四、先学。

一)看书(看一看)。

学生看书自学,教师巡视,确保每一名学生都在紧张的自学。

(二)检测(做一做):

1、完成课本46页做一做,指明学生板演,其余学生做练习本上。(要求字写的大小适中,字体端正。)。

2、教师巡视发现错例,准备二次备课。

五、后教。

(一)更正:

观察黑板上的题,发现错误的进行更正。(不同颜色的粉笔)。

1、看做一做的第1空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

2、看做一做的第2空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

3、看做一做的第3空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

4、看做一做的第4空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

通过刚才的解答,我们可以看出,(总结)一堆糖可以看作是一个整体,可以把这个整体平均分成若干数,所以分数单位也不相同。(学生一分钟时间记忆)。

六、课堂小结。

今天我们学习了分数的意义,知道了一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。(学生记忆并板书)。

七、当堂训练。

1、课本63面练习十一第1、2、3题。(必做题)。

2、有三个小盒里面装有小棒,我从第一个小盒中拿出一根小棒,这一根小棒是这个整体的五分之一,我从第一个小盒中拿出二根小棒,这二根小棒是这个整体的五分之一,我从第一个小盒中拿出三根小棒,这三根小棒是这个整体的五分之一。你能猜出每个盒子里面原来有几根小棒吗?那你能不能说一说这三个五分之一有什么相同点和不同点吗?(思考题)。

八、板书设计。

一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。

一个整体可以用自然数1来表示,通常把它叫做单位“1”。

本课教学的重点就是分数的意义。考虑到如果让我自己概括分数的意义,概念中“一份”我也会把它纳入到“几份”中去,让学生自主、完整地概括出这一概念几乎不可能。因此我主要是引导学生回顾前面各个分数的产生,使学生在回顾的过程中感受、理解、提炼出分数意义的模型,结合教师的板书补充,逐步形成分数的意义。而对于分数单位的教学,我是在分数的意义教学之后,让学生通过看书,再通过尝试回答,去理解。在多次回答“它的分数单位是多少?它里面有几个这样的分数单位?”之后,学生势必会有一些发现,再请学生概括出分数单位、分数单位的个数与分数分子、分母的关系,使学生在数学技能方面得到发展。

在设计练习时,我着重围绕本课重点既分数意义的理解进行安排,既安排了完成书本上的习题,也设计了一道综合性、生活化、渗透数学思想的习题。首先是让学生在具体的实际生活问题中理解把哪个量看作“单位1”,深化对分数意义的理解;其次是使学生感受到同一个分数,“单位1”的量变化,所对应的数量也随之变化。并引导学生通过观察,感受到“单位1”的量的变化是如何影响分数所对应的数量的变化的。二是发展学生数感,培养学生的估计能力,其实也渗透深化学生对分数意义的理解。三是渗透数学思想,极限的思想。引导学生在现实的问题情景中,通过想象,体会到“日取其半,万世不竭”。学生数感的发展需要专项的训练,但更需要教师课堂教学进行长期的、适时地渗透进行,数学思想、数学文化更是如此。这不是一蹴可就的,而是一个长期的、潜移默化的过程。

但是回顾整课的教学,还是存有一些遗憾。比如一些细节上处理还是不够好。在新授部分将许多物品作为整体呈现时还是需要用一些符号使学生深入感受到将它们看作一个整体,在学生看书过程中缺少必要的引导和指导。还有就是练习的量还是较少,学生在技能层面发展不够。

文档为doc格式。

分数的基本性质教学设计及反思篇六

一、创设情境,激发学生兴趣。

本节课创设了一个故事情境:孙悟空请猪八戒吃西瓜,猪八戒贪吃,先分给它1/3,它嫌少;分给他2/6,它还想多要;之后分给它3/9,这下它才觉得满意,觉得自己赚了一个便宜它真赚了吗与学生共同探讨这个问题,出示教材例1,用一个圆表示一个完整的西瓜,让学生用涂色表示分数。观察发现三个分数相等。从而能初步感受新知。

二、手脑并用,在实践中深入感知分数。

请同学们用一张正方形片代,动手折一折,透过三次对折,每次找出一个和1/2相等的分数。比较涂色部分的大小有没有变化(没有)那么得到了什么结论学生很容易得出:1/2=2/4=4/8=8/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时乘(或除以)一个相同的数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

三、巩固练习,围绕中心。

在设计练习的过程中,联系生活实际,我设计了口答题、填空题、涂一涂等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。

反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师带给的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

让学生在学习中理解,在观察中发现,在应用中总结,最后运用知识,深化对“分数的基本性质”认识,使学生加深对“分数的基本性质”的理解,激发了学生的学习兴趣,使每个学生都能理解所学知识,学有所获,并为进有步学习约分和通分打下良好的基础。

分数的基本性质教学设计及反思篇七

教学内容:人教版五年级数学下册57页内容。

教学目标:

知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。

过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。

情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。

教学重点:使学生理解和掌握分数的基本性质。

教学难点:运用分数的基本性质解决相关的问题。

教学准备:多媒体课件、正方形纸、直尺、彩笔。

教学过程:

1、比一比:看谁算得又对又快。

2、说一说:商不变的性质是什么?

3、想一想:分数与除法有怎样的关系?

4、猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?

说出自己从故事中听到的分数。

1、折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。

2、画一画:画出折痕所在的直线。

3、涂一涂:

(1)给平均分成2份的正方形纸的其中的1份涂上颜色。

(2)给平均分成4份的正方形纸的其中的2份涂上颜色。

(3)给平均分成8份的正方形纸的其中的4份涂上颜色。

4、比一比:比较3张正方形纸涂色部分的大小。

5、议一议:和同伴说说自己的想法。

1、这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。

2、汇报交流。

3、启发点拨。

通过从左往右观察、比较、分析,你发现了什么?

引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。

那么,从右往左看呢?

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

4、归纳小结:引导学生概括出分数的基本性质。

1、学生独立思考,完成例2。

2、反馈交流,订正点拨。

3、小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。

这节课你有什么收获?你对自己的哪些表现比较满意?

板书设计:

例1:

分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

例2:

读书破万卷下笔如有神,以上就是为大家整理的6篇《《分数基本性质》教学设计》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。

分数的基本性质教学设计及反思篇八

学习内容分析:

“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。

学习者分析:

学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。

教学目标:

3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。

教学重点:

经历主动探索过程并发现和归纳分数的基本性质。

教学难点:

设计意图:

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。

基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

教学过程:

一、复习旧知,引入新课。

1、直接写出得数:

(1)18÷6=(2)120÷40=(3)2÷3=—。

180÷60=12÷4=10÷15=—。

2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)。

3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。

(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)。

二、小组合作,探究新知。

1、折一折,画一画。

师:请同学们拿出准备好的三张长方形纸片。

要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。

2)用分数表示阴影部分,

3)将阴影部分剪下来进行比较,看看能发现什么?

2、汇报。(师将一份学生作品贴在黑板上),

请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)。

3、师出示例2的三幅图,

4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。

3、算一算。

2)学生先独立思考,后小组里讨论交流想法。

3)汇报。小组派代表汇报,教师根据汇报适当板书。

(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)。

1、师:哪位同学能用一句话把大家发现的规律概括出来呢?

2、师:像右边那样列式行吗?=,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)。

3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)。

(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)。

三、解释应用,强化认知。

2、第43页试一试。

3、练一练。第44页第4题。

4、判断对错。

(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。

()。

(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

()。

(3)3/4的分子乘3,分母除以3,分数的大小不变。

()。

(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。

()。

4、数学游戏“你说我对”(图略)。

(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)。

四、小结回顾,评价激励。

这节课你有什么收获?运用分数的基本性质解决问题时要注意什么?

(复习所学知识和方法,加深认识,深化主题)。

五、布置作业,拓展延伸。

1、课本第44页第1、2、3题。(巩固所学知识)。

分数的基本性质教学设计及反思篇九

一、创设情境,激发学生兴趣。

本节课创设了一个故事情境:孙悟空请猪八戒吃西瓜,猪八戒贪吃,先分给它1/3,它嫌少;分给他2/6,它还想多要;之后分给它3/9,这下它才觉得满意,觉得自己赚了一个便宜它真赚了吗与学生共同探讨这个问题,出示教材例1,用一个圆表示一个完整的西瓜,让学生用涂色表示分数。观察发现三个分数相等。从而能初步感受新知。

二、手脑并用,在实践中深入感知分数。

请同学们用一张正方形片代,动手折一折,透过三次对折,每次找出一个和1/2相等的分数。比较涂色部分的大小有没有变化(没有)那么得到了什么结论学生很容易得出:1/2=2/4=4/8=8/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时乘(或除以)一个相同的数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

三、巩固练习,围绕中心。

在设计练习的过程中,联系生活实际,我设计了口答题、填空题、涂一涂等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。

反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师带给的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

让学生在学习中理解,在观察中发现,在应用中总结,最后运用知识,深化对“分数的基本性质”认识,使学生加深对“分数的基本性质”的理解,激发了学生的学习兴趣,使每个学生都能理解所学知识,学有所获,并为进有步学习约分和通分打下良好的基础。

文档为doc格式。

分数的基本性质教学设计及反思篇十

1. 让学生通过经历预测猜想――实验分析――合情推理――探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

使学生理解分数的基本性质。

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2. 师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4. 研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)

分数的基本性质。

5. 深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的`理解,用自己的语言说一说。”(学生讨论后发言)

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

这节课大家有什么收获?

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了“猜想――试验分析――合情推理――探究创造”的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。

《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,我先引导学生自己动手分月饼,发现三个人分得的月饼同样多,然后得出三个分数同样大,再来观察几组分数的分子、分母发生了怎样的变化,然后在观察与分析中逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服