当前位置:网站首页 >> 作文 >> 2023年分数的基本性质说课稿 分数的基本性质教案(通用15篇)

2023年分数的基本性质说课稿 分数的基本性质教案(通用15篇)

格式:DOC 上传日期:2023-12-01 18:53:04
2023年分数的基本性质说课稿 分数的基本性质教案(通用15篇)
时间:2023-12-01 18:53:04     小编:ZS文王

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

分数的基本性质说课稿篇一

1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

3.较好的实现知识教育与思想教育的有效结合。

一、创设情景。

师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

二、新授。

师:同学们想了很多好的方法,哪个小组愿意汇报一下?

生2:我们组是用折纸的.方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)。

(学生认真讨论)。

师:同学们汇报一下你们的讨论结果。

三、自主练习巩固提高。

课本第80页1、2、3、题。

其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。

一生小结,他生补充,教师评判。

分数的基本性质说课稿篇二

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

多媒体课件 长方形白纸、圆片,彩色笔等。

一、 创设情境,激趣导入

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1、小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2、汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大 。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、 这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书 =)

生:分数的分子分母发生了变化分数的大小不变。

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书 分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时 相同 0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三、应用新知,练习巩固。

(一) 练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二) 判断(抢答)

1、 分数的分子、分母都乘过或除以相同的数分数的大小不变。( )

2、 把的分子缩小5倍,分母也缩小5倍分数的大小不变。( )

3、 给分数的分子加上4,要是分数的大小,分母也要加上4。( )

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四、总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五、作业

练习册2、4题

板书设计:

分数的基本性质

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

分数的基本性质说课稿篇三

《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。

2、知识间的联系:

七册:商不变性质十册:分数的基本性质十二册:比的基本性质。

同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。

二、指导思想与设计理念。

新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。

根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。

三、学情分析。

前测:(问卷形式)。

问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。

2:试着做一做下面这些题比较大小:

4/7○2/71/2○2/43/5○9/15。

分析:暂无。

结论:暂无。

四、教学目标及重难点。

教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

教学重点:

解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。

教学难点:

解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。

五、教法学法:

教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

六、教学过程。

一、迁移旧知.提出猜想。

1回忆旧知。

活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数除数=。

通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:。

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

二、验证猜想,建构新知。

环节1、看图分类。

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。

环节2、讨论方法。

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

1/2=2/4=4/8。

通过让学生表述怎么判断它们相等的锻炼学生的表达能力。

3、研究规律。

利用研究卡进行研究。

确定的研究对象。

分子和分母同时乘上或者。

除以一个相同的数。

得到的分数。

研究对象与得到的分数相等吗?

相等()不相等()。

猜想是否成立?

成立()不成立()。

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)。

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)。

师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)。

环节4、质疑完善。

3/4=3()/4()。

师:括号中可以填哪些数?

预设:可以填无数个数。

师:如果只用一个数来表示,填什么数好?

预设:字母。

师:这个字母有什么特殊要求吗?(0除外)。

得到一个初级的数学模型。3/4=3x/4x(x0)。

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

通过这个环节的练习,进行第一次数学建构。

三、练习升华。

通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、和哪一个分数大,你能讲出判断的依据吗?

四、总结延伸。

师:这节课学了什么?

师:如果一个分数为a/b,你能用一个式子来表示分数的基本性质吗?

a/b=ax/4x(x0)或a/b=ax/4x(x0)。

在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。

五、作业p87-1、2。

板书设计。

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

68。

34。

1216。

文档为doc格式。

分数的基本性质说课稿篇四

着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

学生已经清楚理解分数的好处,明确分数与除法的关系,商不变

性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

综合分析课程标准要求及学生实际,我确定本节教学目标如下:

1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同

的分数化成分母(或分子)相同而大小不变的.分数。

2.初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。

3.受到数学思想的熏陶,养成乐于探究的学习态度。

教学重点:理解掌握分数的基本性质,它是约分、通分的依据。

教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。

根据本节课的教学目标,思考到学生已有的知识、生活经验和认

知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

本节课的教学过程我分五个部分进行

第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问

题情境,揭示本节课要研究的问题。

第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

第五部分:梳理知识,反思小结。主要是总结全课。

其中,第三部分“合作探究,发现规律”能够细化为三个环节:

环节一:动手操作,进行比较

这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。

环节二:呈现问题,引导观察

这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。

环节三:交流汇报,得出规律

这一环节主要是学生汇报交流,得出结论。

如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。

就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。

以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

分数的基本性质说课稿篇五

分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。

《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

2、培养学生观察、分析、思考和抽象、概括的能力.

3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

每生三张正方形纸

演示法、观察法、讨论法、交流法。

分数的基本性质说课稿篇六

2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。

3、能灵活的运用通分的方法进行分数的大小比较。

运用通分的方法进行分数大小比较。

分数卡片。

一、回顾。

1、什么是通分?怎样通分?

2、我们可以在什么时候应用通分?

3、互动:相互出题练习相互交流(3分钟)。

二、教学例5。

出示例题:小芳和小明看一本同样的.故事书。

学生提出问题。

分析解答。

师:谁看的页数多?

这个问题实质是什么?

生:比较两个分数的大小。

师:小组研究,比较两个分数的大小。

方法一:画图比较。

方法二:通分比较。

转化成同分母的分数。

方法三:化成小数再比较。

学生汇报,分类领悟比较的方法。

注意方法的规范。

你还有什么别的比较方法吗?

:通分的方法在比较分数大小中的运用。

三、巩固练习。

1.先通分,再比较下面各组分数的大小66页练一练。

2、练习十二第五题。

先明确题目的要求有两个。

4、自由练习。

分小组编拟交换练习。

四、全课:

五、课堂作业:

第7题,第8题。

分数的基本性质说课稿篇七

一、教学思路清晰,目标明确,重难点突出。

二、创设情境,重视操作活动,发挥主体作用。

老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。

三、练习设计具有层次性,开放性。

由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。

分数的基本性质说课稿篇八

1.经历探索分数的基本性质的过程,理解分数的基本性质。

2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变得分数。

3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

探索和理解分数的基本性质

理解分数的基本性质,并能应用其解决一些简单问题。

圆、长方形纸片

出示40的圆形图,画出阴影,提问:你可以用分数表示出阴影部分得面积吗?

折一折

说一说这些分数有什么共同之处。

归纳:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

学生独立尝试填写,教师巡视指导,然后让学生交流自己的思考过程。

指导学生进行练习,并让学生说说是运用了分数的什么性质?

练一练

涂一涂,填一填。完成第1、2题。

学生填写完要说说想法,重点说说分母由3变成了18要乘6,所以分子2也要乘6。

完成练一练第3、4题。

板书设计:

找规律

分数的分子和分母都乘以

或除以相同的数(0除外),

分数的大小不变

分数的基本性质说课稿篇九

内容:p15、16例1、2,练习四第1-3题。

目标:

1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

过程:

一、创设情境,导入新课。

“大圣”分桃:

二、师生共研、发现规律。

师生共同揭秘“分桃”内幕。

人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

1÷2=1/2=2/4=4/8。

从上面这三个分数的相等关系,你发现了什么?

从左往右看:

1/2=1×2/2×2=2/4。

从右往左看:

2/4=2÷2/4÷2=1/2。

1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

观察分子、分母的变化,同时归纳小结。

学生试,验证自己提出的观点是否正确。

小结:

分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

三、数学小报,再次验证。

1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

2.将折得的小报中数学趣题版用阴影显示出来。

3.将四张的折叠结果重叠,得出数学趣题版面大小。

4.针对式子进行口头表述。

四、理解性质、简单运用。

例2的教学。

(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

请同学们理清题意,然后进行转化。

(2)反馈。

(3)质疑。

让学生通过讨论,深化对分数大小不变的要求的理解。

(4)议一议。

由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

五、练习巩固、拓展提高。

1.课堂活动。

2.提取第一题的结果,进行深入思考:

结论:大小不变,分数单位要变。

六、全课总结:

七、作业:

练习四第1-3题。

分数的基本性质说课稿篇十

老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。

由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。

分数的基本性质说课稿篇十一

教学内容:教科书第60~61页,例1、例2、练一练,练习十一第1~3题。

教学目标:

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

教学过程:

一、导入新课。

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课。

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)。

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

三、巩固练习。

2、完成第2题。独立完成,交流想法。

四、课题总结。

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

分数的基本性质说课稿篇十二

p15、16例1、2 ,练习四第1-3题。

1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

正确理解与分析运用分数的基本性质。

“大圣”分桃:

师生共同揭秘“分桃”内幕。

人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

1÷2=1/2=2/4=4/8

从上面这三个分数的相等关系,你发现了什么?

从左往右看:

1/2 = 1×2 / 2×2 = 2/4

从右往左看:

2/4 = 2÷2 / 4÷2 = 1/2

1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

观察分子、分母的变化,同时归纳小结。

学生试,验证自己提出的观点是否正确。

分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

2.将折得的小报中数学趣题版用阴影显示出来。

3.将四张的折叠结果重叠,得出数学趣题版面大小。

4.针对式子进行口头表述。

例2的教学

(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

请同学们理清题意,然后进行转化。

(2)反馈。

(3)质疑

让学生通过讨论,深化对分数大小不变的要求的理解。

(4)议一议

由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

1.课堂活动

2.提取第一题的结果,进行深入思考:

结论:大小不变,分数单位要变。

练习四第1-3题。

分数的基本性质说课稿篇十三

这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,莫老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。

莫老师老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

文档为doc格式。

分数的基本性质说课稿篇十四

教学目的:

理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

3.较好实现知识教育与思想教育的'有效结合。

教学难点:

理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

教学准备:

板书有关习题的幻灯片。

教学过程:

一、复习。

1.出示。

在括号里填上适当的数:

指名说一说结果,并说一说你是根据什么填的?

二、课堂练习:

1.自主练习第4题。

学生先独立做,教师巡视,并个别指导,集体订正。

教师板书题目中的线段,指名让学生板演。

在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)。

怎样找出相等的分数?

让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

然后要求学生在书上把这几个相应的点找出来。指名板演。

2.自主练习第5题。

先让学生独立做,教师巡视。个别指导。

指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

教师根据学生的回答选择几个题目进行板书。

3.自主练习第6题。

先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

集体订正。指名说一说自己的计算过程和结果。

教师根据学生的回答选择几个题目进行板书。

4.自主练习第7题。

学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

5.自主练习第8题。

学生先独立做。

分数的基本性质说课稿篇十五

内容:p15、16例1、2,练习四第1-3题。

目标:

1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

过程:

一、创设情境,导入新课。

“大圣”分桃:

二、师生共研、发现规律。

师生共同揭秘“分桃”内幕。

人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

1÷2=1/2=2/4=4/8。

从上面这三个分数的相等关系,你发现了什么?

从左往右看:

1/2=1×2/2×2=2/4。

从右往左看:

2/4=2÷2/4÷2=1/2。

1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

观察分子、分母的变化,同时归纳小结。

学生试,验证自己提出的观点是否正确。

小结:

分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

三、数学小报,再次验证。

1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

2.将折得的小报中数学趣题版用阴影显示出来。

3.将四张的折叠结果重叠,得出数学趣题版面大小。

4.针对式子进行口头表述。

四、理解性质、简单运用。

例2的教学。

(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

请同学们理清题意,然后进行转化。

(2)反馈。

(3)质疑。

让学生通过讨论,深化对分数大小不变的要求的'理解。

(4)议一议。

由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

五、练习巩固、拓展提高。

1.课堂活动。

2.提取第一题的结果,进行深入思考:

结论:大小不变,分数单位要变。

六、全课总结:

七、作业:

练习四第1-3题。

文档为doc格式。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服