当前位置:网站首页 >> 作文 >> 高中数学说课稿(精选10篇)

高中数学说课稿(精选10篇)

格式:DOC 上传日期:2023-11-28 11:29:05
高中数学说课稿(精选10篇)
时间:2023-11-28 11:29:05     小编:温柔雨

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

高中数学说课稿篇一

1、地位、作用和特点:

《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。

特点之二是:。

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c。

(2)能力目标:a、b、c。

(3)德育目标:a、b。

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学。

反馈发展。

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的'教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依。

据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。c、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿篇二

本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所a版教材)选修2-2中第§节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.

【知识与技能目标】。

(1)知道曲线的切线定义,理解导数的几何意义;。

——让学生感知和初步理解函数在处的导数的几何意义就是函数的图像在处的切线的斜率,即=切线的斜率.

(2)导数几何意义简单的应用.

——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.

【过程与方法目标】。

(1)回顾圆锥曲线的切线的概念,复习导数概念,寻找在处的瞬时变化率的几何意义;。

(3)通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;。

(5)通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.

【情感态度价值观目标】。

(3)增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.

重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.

难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.

关键:由割线趋向切线动态变化效果,由割线“逼近”成切线的理解.

高中数学说课稿篇三

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能。

会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

(二)过程与方法。

经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

(三)情感态度价值观。

经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点。

由正弦函数的图象得到正弦函数的性质。

正弦函数的周期性和单调性。

此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

(一)新课导入。

首先是导入环节,在这一环节中我将采用复习的导入方法。

我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

(二)新知探索。

接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

学生一边看投影,一边思考如下问题:

(1)正弦函数的定义域是什么。

(2)正弦函数的值域是什么。

(3)正弦函数的最值情景如何。

(4)正弦函数的周期。

(5)正弦函数的奇偶性。

(6)正弦函数的递增区间。

给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

1.定义域:y=sinx定义域为r。

2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]。

3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。

4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

(三)课堂练习。

第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。

(四)小结作业。

最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

高中数学说课稿篇四

抛物线焦点性质的探索(说课)

一、

1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。

2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:

(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。

(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。

3 教学内容、重点、难点及关键 本节安排两节课,

第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;

第二节课:证明第一节所得到的有关性质。

重点:

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

难点;

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。

学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。

4.1 使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型 问题1 回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。 由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。

高中数学说课稿篇五

今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

教材的地位和作用。

本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。

学情分析。

本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

1.知识与技能。

理解二次函数中参数a,b,c,h,k对其图像的影响;

2.过程与方法。

通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。

3.情感态度与价值观。

通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。

通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下。

重点:

二次函数图像的平移变换规律及应用。

难点:

探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。

1、教法分析。

基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

2、学法分析。

新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。

为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。

(1)知识导入。

温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。

(2)讲授新课。

例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像。

让学生画出他们的图像并观察函数图像的`特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。

(3)巩固练习。

我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。

(4)归纳总结。

我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。

(5)布置作业。

高中数学说课稿篇六

导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探

索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

(2)教学难点:椭圆标准方程的建立和推导。

1、动画演示,描绘出椭圆轨迹图形。

2、实验演示。

思考:椭圆是满足什么条件的点的轨迹呢?

1、动手实验:学生分组动手画出椭圆。

实验探究:

保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

2、概括椭圆定义

引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为的椭圆上任一点m,有什么性质?

令椭圆上任一点m,则有

1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

2、研讨探究

问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点m,有

,尝试推导椭圆的方程。

思考:如何建立坐标系,使求出的方程更为简单?

将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

方案一方案二

按方案一建立坐标系,师生研讨探究得到椭圆标准方程

=1(),其中b2=a2-c2(b0);

选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b0)。

教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

1、观察椭圆图形及其标准方程,师生共同总结归纳

(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

(3)椭圆标准方程中三个参数a,b,c关系:;

(4)椭圆焦点的位置由标准方程中分母的大小确定;

(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

2、在归纳总结的基础上,填下表

标准方程

图形a,b,c关系焦点坐标焦点位置

在x轴上

在y轴上

例1、求适合下列条件的椭圆的标准方程

(1)两个焦点的坐标分别是,椭圆上一点p到两焦点距离和等于10。

(2)两焦点坐标分别是,并且椭圆经过点。

例2、(1)若椭圆标准方程为及焦点坐标。

(2)若椭圆经过两点求椭圆标准方程。

(3)若椭圆的一个焦点是,则k的值为。

(a)(b)8(c)(d)32

例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点p向x轴作垂线段,求线段中点m的轨迹。

1、写出适合下列条件的椭圆标准方程

(1),焦点在x轴上;

(2)焦点在x轴上,焦距等于4,并且经过点p;

2、若方程表示焦点在y轴上的椭圆,则k的范围。

3、已知b,c是两个定点,周长为16,求顶点a的轨迹方程。

4、已知椭圆的焦距相等,求实数m的值。

5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

6、已知p是椭圆上一点,其中为其焦点且,求三解形面积。

师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

课本第96页习题§8。1第3题、第5题、第6题。

课后思考题:

1、知是椭圆的两个焦点,ab是过的弦,则周长是。

(a)2a(b)4a(c)8a(d)2a2b

2、的两个顶点a,b的坐标分别是边ac,bc所在直线的斜

率之积等于,求顶点c的轨迹方程。

2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

教学设计说明

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

高中数学说课稿篇七

尊敬的各位教师:

大家好,我是x场的x号考生。今日,我说课的资料是xxx。

对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能。

会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

(二)过程与方法。

经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

(三)情感态度价值观。

经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点。

由正弦函数的图象得到正弦函数的性质。

正弦函数的周期性和单调性。

此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的进取性、主动性。

(一)新课导入。

首先是导入环节,在这一环节中我将采用复习的导入方法。

我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

(二)新知探索。

接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

学生一边看投影,一边思考如下问题:

(1)正弦函数的定义域是什么。

(2)正弦函数的值域是什么。

(3)正弦函数的最值情景如何。

(4)正弦函数的周期。

(5)正弦函数的奇偶性。

(6)正弦函数的递增区间。

给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

1.定义域:y=sinx定义域为r。

2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]。

3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。

4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

(三)课堂练习。

第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。

(四)小结作业。

最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:

(略)。

高中数学说课稿篇八

根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。

为了实现本节课的教学目标,在教法上我采取了。

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。

(一)创设情境,提出问题。

(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:

[教师活动]引导学生观察图象,提出问题:

问题1:说出气温在哪些时段内是逐步升高的或下降的?

问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。

(二)探究发现建构概念。

[学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。

[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量810,对应的函数值有14。举几个例子表述一下。然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征。

在学生对于单调增函数的特征有一定直观认识时,进一步提出:

问题3:对于任意的t1、t2∈[4,16]时,当t1。

(t1)。

[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述。

[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”。告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

最后完成单调性和单调区间概念的整体表述。

[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的`经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程。刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强。从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点。

(三)自我尝试运用概念。

1.为了理解函数单调性的概念,及时地进行运用是十分必要的。

[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明。

[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间。

[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集。

[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解。

[教师活动]问题6:证明在区间(0,+∞)上是单调减函数。

[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难。

[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式。

[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断。

[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

(四)回顾反思深化概念。

[教师活动]给出一组题:

2、若定义在r上的单调减函数f(x)满足f(1+a)。

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法。

[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化。

[教师活动]作业布置:

(1)阅读课本p34-35例2。

(2)书面作业:

必做:教材p431、7、11。

探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论。

[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯。基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层。学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流,以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。

高中数学说课稿篇九

开始:各位专家领导, 好!

今天我将要为大家讲的课题是

首先,我对本节教材进行一些分析

,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1 基础知识目标:

2 能力训练目标:

3 创新素质目标:

4 个性品质目标:

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点: 通过 突出重点

难点: 通过 突破难点

关键:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生

“知其然”而且要使学生“知其所以然”,

我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:

,应着重采用 的教学方法。即:

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:

2、实践:

3、能力:

最后我来具体谈一谈这一堂课的教学过程:

1、由 引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的'问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:

2、由实例得出本课新的知识点是:

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

注意时间掌握

电脑课件

使用投影

根据时间进行增删

高中数学说课稿篇十

各位领导和教师,大家好!我说课的资料是苏教版必修1第1章第3节第一课时《交集、并集》,下头我想谈谈我对这节课的教学构想:

与传统的教材处理不一样,本章在学生经过观察具体集合得到集合的补集的概念后,上升到数学内部,将"补"理解为集合间的一种"运算".在此基础上,经过实例,使学生感受和掌握集合之间的另外两种运算—交和并。设计的思路从具体到理论,再回到具体,螺旋上升。集合作为一种数学语言,在后续的学习中是一种重要的工具。所以,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学资料。有了集合的语言,能够更清晰的表达我们的思想。所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。

基于以上的分析制定以下的教学目标。

1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。能用venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。

2、经过对交集、并集概念的学习,培养学生观察、比较、分析、概括的本事,使学生认识由具体到抽象的思维过程。

3、经过对集合符号语言的学习,培养学生符号表达本事,培养严谨的学习作风,养成良好的学习习惯。

针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。而把如何引导学生经过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。

针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习积极性的原则,采用"五环节教学法".同时利用多媒体辅助教学。

下头我重点说一说教学过程。

第一个环节:问题情境。

经过实例:学校举办了排球赛,08小教(2)56名同学中有12名同学参赛,之后又举办了田径赛,这个班有20名同学参赛。已知两项都参赛的有6名同学。两项比赛中,这个班共有多少名同学没有参加过比赛?让学生感受到数学与我们的生活息息相关,从而激发学生的学习兴趣。

学生思考后回答,然后教师加以引导,让学生的回答到达这样三个层次:

层次一:发现要求没有参加比赛的人数,首先应当算出参加比赛的人数,并且明白参加比赛的人数是12+20-6,而不是12+20,因为有6人既参加排球赛又参加田径赛。

层次二:教师引导学生利用集合的观点再来研究这个问题。先设利用venn图来表示集合a,b,c.发现集合a,b的公共部分就是集合c.

层次三:引导学生发现集合c的元素的构成与集合a,b的元素的关系。学生能够发现集合c中的元素是由既参加排球比赛又参加田径比赛的同学构成的,更进一步集合c的元素是由既属于集合a的元素又属于集合b的元素构成的。

经过对三个层次的探究和分析让学生体验数学发现和创造的历程。

第二环节:最终抽象、归纳出交集的文字叙述的定义。

定义给出后,让学生利用数学符号语言写出的集合表示。充分体现使用集合语言,能够简洁、准确地表达数学的一些资料。

第三环节:经过两个例子巩固定义。

例1是较为简单的不用动笔,同学直接口答即可;例2是必须动笔计算的,并且还要经过数轴辅助解决,充分体现了数形结合的思想。经过这两个例子的解决,使学生不仅仅掌握数学基础知识和基本技能,同时也体现出了数学的思想方法,发展学生的应用意识和创新意识。

第四环节:最终对交集进行再认识,并利用venn图归纳、总结出交集的性质。

在这一环节中教师只是引导着,学生是主体,充分发挥学生的积极主动性,使学生在学习的过程中成为在教师引导下的"再创造"过程。应当准备预案。

第五环节:经过综合性较强的例子进一步巩固定义和性质。

这样的五个环节不仅仅充分研究到学生的认知规律,并且为学生和教师的积极活动供给了空间和可能。更印证了低起点、高要求、循序渐进,充分调动学生学习积极性的原则。

交集的定义、性质研究清楚之后,并集的定义、性质就顺理成章了,仿照交集的研究方法去研究。这样不仅仅让学生学到了知识,并且学会了探究问题的方法。

交集、并集的定义、性质研究完了以后,设计"感受理解、思考运用、拓展探究"三个不一样层次的练习题进行检测本节课的学习效果,同时要研究到不一样水平,不一样兴趣学生的学习需要。

小结应先由学生总结,然后教师强调两点:一是交集与并集的区别与联系;二是对本节课进行科学的评价,既要关注学生学习数学的结果,又要关注它们在数学活动中所表现出的情感态度的变化,关注学生个性与潜能的发展,关注学生数学地提出、分析、解决问题的过程的评价,以及在过程中华表现出来的与人合作的态度,表达与交流的意识和探索精神。

作业、板书设计。

以上就是我说课的资料,多谢大家!

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服