无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
真分数与假分数教学反思教师篇一
这一课教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。《新课程标准》强调:动手实践、自主探索与合作交流是学生学习数学的.重要方式。研究性学习作为培养学生学习能力的重要学习方式愈来愈受到重视。所以在设计真分数和假分数这一课时,我力图把研究带入学习之中,让学生在学习中进行研究,在研究中学到知识、发展能力。
分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三,因此在教学真分数和假分数时,我首先帮助学生从分数意义上理解和掌握新课的内容。
在教学过程中,我首先通过让学生叙述自己表示出的分数、分数的意义,回答分数的分数单位及有几个这样的分数分数单位等内容,为学生学习真分数和假分数奠定基础。
其次充分发挥学生主体的作用。启发学生思考,让学生合作探究;然后依据真分数和假分数的分类,引导学生在已经掌握的分数概念的基础上,通过观察、比较、抽象、概括,从特殊到一般,理解并掌握真分数、假分数的概念,自己得出应用的判断和结论。
最后通过观察数轴上各点所表示的分数,引导学生将真分数和假分数与1作比较,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,进一步理解了真分数和假分数之间的联系和区别。
真分数与假分数教学反思教师篇二
《真分数和假分数》是在学生已经学习了分数的意义、分数单位和分数与除法的基础上进行教学的。只有学习了真分数和假分数,学生才能比较全面地理解分数的概念,所以教学中我紧扣住数形结合的思想,使学生从直观上理解了真分数与假分数的意义,这样学生概括真分数和假分数的概念和特征即为水到渠成。
1.将课堂还给学生,让课堂焕发出生命的活力。
在整个过程设计中,我努力营造学生独立、主动的学习“时间”和“空间”,使学生成为课堂教学过程重要的参与者和创造者,引导学生去探究,自己去发现,使学生对新知沿着理解、掌握、熟练不断前进,从而获得了最佳效果。
2.通过自主探究与研究,学生的能力得以提升
教学中让学生在观察、比较、归纳等活动中自己领悟出真分数和假分数的意义。学生经历这一过程后,自学能力得到培养,提升了思维水平,提高抽象概括能力,学生能正确辨别真分数和假分数,从而达到了这节课的学习目标。
3.关注学困生,提高了课堂教学效果。
1.教学能力还需提高
2.应变能力和调控能力还需提高。
真分数与假分数教学反思教师篇三
昨天,市教研室来我校调研,有幸请张平老师指点了一节数学课:《真分数和假分数》。听了张平老师的点评,有如下启示:
学生在前一阶段所认识的分数都是分子比分母小的分数,而且这些分数表示的都是一个数量中的一部分和这个数量的关系。本节课上,学生需要认识分子与分母相等及分子比分母大的分数,以及真分数和假分数的概念。教材上的例2是利用学生对分数意义和分数单位的`已有认识,通过涂色,先后引出对4∕4和5∕4的认识。教学时,我按照教材的编写意图,按部就班的引导学生认识。出示了分数“5∕4”后,我问学生:“这里把什么看作了单位‘1’?”学生一致认为是“把两个圆看作单位‘1’”。其实,这样的回答是我在设计教学时就已经预料到的,于是我开始引导:如果是把两个圆看作单位“1”,一共平均分成了几份?取了几份?用分数表示是多少?5/8和5∕4一样吗?再想想应该把什么看作单位“1”?学生:“两个圆!”尽管前面有例题的明示“把一个圆看作单位‘1’”,尽管我作了引导,可学生还是坚持他们的想法。无奈,我只得重新再引导一遍。
课后,张平老师的方法给了我启发:在让学生涂色表示5/4时,先只出示一个圆让学生说单位“1”、涂色,学生肯定会说不够,由此再出示第二个圆,即再出示一个单位“1”,合起来是两个单位“1”,两个圆是两个单位“1”,而不是一个单位“1”。有了这样的铺垫引导,学生就有了深刻的理解。
另外,张平老师还提到一节课练习的设计要设计好,要注意层次等。听了张平老师的点评及建议,我深深体会到,每节课前,都要认真钻研教材,要精心设计好每一个教学细节,正所谓:细节决定成败。在一定程度上,课堂是由无数个细节组成的。细节是一种长期潜心的准备,细节是可以挖掘、预设的,我们教师要善于把握课堂教学中的每一个细节,从小事入手,以小见大,进而创造出有效、精彩的课堂。
真分数与假分数教学反思教师篇四
“分数的意义”是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上的一次飞跃。
在教学过程中,让学生在动手操作中,进一步体会分数意义中“平均分”、“分几份”、“取几份”的含义,这比枯燥的死记硬背条文要有趣的多,印象也深刻的多。同样,在分与折中,学生初步感知了分数意义在解决有关实际问题的(转载于:真分数和假分数教学反思应用价值,这对学生的后续学习具有重要意义。
1.在练习上淡化语言描述,强调概念本质。在练习中没有反复的描述,但学生在折一折、分一分、说一说等数学活动中,已经深刻的领会到了分数的本质意义,并且掌握的更加灵活。
2.由单一为丰富,变枯燥为形象。通过分数与图形的结合、分数与整数的对应、分数在实际中的应用,形成了分数的意义表象,沟通了概念之间的联系,强化了实际应用在数学概念学习中的作用。练习也变得富有吸引力了。
3.练习突出学生的创造性。以往的练习设计,问题封闭、答案唯一、缺乏灵活性。在这里注意到了问题的开放性、挑战性,最后一道题目,需要学生思维的参与,每一道题目,不同的人可以有不同的解答,让学生充分体验思维的力量,享受创造的快乐!教学中,学生不时有精彩呈现。
数学练习在数学教学中有着重要的作用。我在“分数的意义”这一课中设计的联系生活练习,能有效的解决了学生对分数意义的掌握过于抽象、枯燥、难懂的困难,使学生在有趣、富有思考性的练习中,从更高层面上来认识和理解分数。
真分数与假分数教学反思教师篇五
一、本节课采用了“先学后教,当堂训练”的教学模式,纵观整节课有以下几个特点:
1.将课堂还给学生,让课堂焕发出生命的活力,《真分数、假分数》教学反思。
在整个过程设计中,我努力营造学生独立、主动的学习“时间”和“空间”,使学生成为课堂教学过程重要的参与者和创造者,引导学生去探究,自己去发现,使学生对新知沿着理解、掌握、熟练不断前进,从而获得了最佳效果。
2.通过对知识点的梳理,学生的能力得以提升
教学中让学生汇报自学收获,通过练习反馈等活动领悟出真分数和假分数的意义。学生经历这一过程后,自学能力得到培养,提升了思维水平,提高抽象概括能力,教学反思《真分数、假分数》教学反思》。从自学检测反馈来说,学生能正确辨别真分数和假分数。其中本节课的教学重点是让学生能够熟练地将假分数化成整数或带分数,教学关键在于利用分数与除法的关系来完成化简过程。通过看书、交流等活动,从而达到了这节课的学习目标。
3.关注学困生,提高了课堂教学效果。
二、存在的不足:
1.教学能力还需提高
虽然我能及时给学生纠正错误,但还是显得有些急躁,没有让学生准确用数学语言表达,忽略了学生表达能力的培养。
2.教学重难点的设计争取做到精、简、细、全
本节课虽然体现了容量太大,但问题过多,设计不够精细,巩固练习容易忽略个别问题,整节课虽然课堂气氛热烈,但遗憾的'是在教学把假分数化成带分数这一方法时,直观性方面显得有些欠缺,如书中数形结合的直观性题目没有充分利用。练习密度大,有梯度,但是该让学生内化的东西没有很好地落实,说明在备课的时候,轻视了算理,太重视算法。在今后的教学设计中,一定不能忽视学生学习的思维和能力方面的训练。
3.应变能力和调控能力还需提高。
三、教学重建
1.如果让我重新来上这节课,我将会合理整合各个知识点,符合学生学习认知特点。
2.在后教环节中尽量引导学生发现问题,减少教师没必要的话语,鼓励学生大胆去说去做,采用“兵教兵”的形式互帮互助,培养学生解决问题的能力。
在今后教学中我将加倍努力,全面提高教学质量。
真分数与假分数教学反思教师篇六
xx省xx市实验小学的xx老师执教一课,朱老师提出要“帮助学生理解真分数和假分数的意义,准确把握真分数和假分数的本质特征”。课前朱老师做出这样的思考:“学生怎样才算真正理解了真分数和假分数的意义?首先要结合具体的情境,让学生经历假分数的形成过程,感受并认同假分数产生和存在的合理性。其次,从学习基础分析,当学生面对一个真分数时,已经能从多个不同的角度去理解,并用自己的方式作出解释。比如,可以从部分与整体(一个物体或一个群体)的层面进行解读,也可以理解为两个量之间的一种关系,即一个量相当于另一个量的几分之几。我认为,只有当学生看到一个假分数时,能利用已有的经验从不同的维度去解读它,对它的理解程度能与真分数等同了,才算真正实现了假分数意义的构建。”
教学片断:
师:你能用自己喜欢的方式表示出四分之一吗?
学生个性化画图。
教师和学生从四分之一开始,每一次增加一个分数单位,学生很自然也很顺利地完成。
师:看着这5个分数,你有觉得谁最特殊呢?
生:四分之五。因为分子比分母还要大。
师:还有谁比较特殊呢?
生:四分之四。分子和分母一样大。
师:像这样子分子大于分母或者分子等于分母的分数,叫做假分数。
笔者在课堂巡视时看到了大多数的学生都会选择比4小或者等于4的数,并能正确画图表示.
可以看出,学生对于分数的认识有了质的飞跃,即“学生认识到假分数在形式上与真分数是不一样的,但其实质都是分数单位累加的结果。”
真分数与假分数教学反思教师篇七
上周教学了第四单元的二课时《真分数和假分数》。这节课是一堂概念教学课,主要任务是让学生明确真分数、假分数的概念及将分数分为这两大类的分类标准是什么,初步了解分类标准在分类活动中起着十分重要的作用。
所以教学中我紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的'概念和特征即为水到渠成。
整节课的内容相对来说还是比较简单的,学生掌握起来也比较轻松。在课后的作业里有一个这样的题目:请你用自己的话来理解分子比分母大或者分子和分母相等的分数叫假分数。
有个同学写了一句很有意思的答案:我觉得分子不应该比分母大,因为妈妈总比儿子大。我忍俊不禁,随即在第二天的课上对此答案随性发挥。
联想到在教学分数各部分名称时说到分数线下面的是分母,做为母亲他高高的托着自己的孩子--分子,所以分子在上,分母在下。因为孩子的年龄都要比母亲小,所以分子小于分母是符合实际情况的,那么这样的分数我们叫做真分数,而如果孩子和母亲一样大,或大于母亲了,那么这种情况就不符合实际,这样的分数就叫做假分数。说到这里孩子们都笑了,我知道他们从心里真正领悟了!
真分数与假分数教学反思教师篇八
昨天(3月20日),市教研室来我校调研,有幸请张平老师指点了一节数学课:《真分数和假分数》。听了张平老师的点评,有如下启示:
学生在前一阶段所认识的分数都是分子比分母小的分数,而且这些分数表示的都是一个数量中的一部分和这个数量的关系。本节课上,学生需要认识分子与分母相等及分子比分母大的分数,以及真分数和假分数的概念。教材上的例2是利用学生对分数意义和分数单位的已有认识,通过涂色,先后引出对4∕4和5∕4的认识。教学时,我按照教材的编写意图,按部就班的引导学生认识。出示了分数“5∕4”后,我问学生:“这里把什么看作了单位‘1’?”学生一致认为是“把两个圆看作单位‘1’”。其实,这样的回答是我在设计教学时就已经预料到的,于是我开始引导:如果是把两个圆看作单位“1”,一共平均分成了几份?取了几份?用分数表示是多少?5/8和5∕4一样吗?再想想应该把什么看作单位“1”?学生:“两个圆!”尽管前面有例题的明示“把一个圆看作单位‘1’”,尽管我作了引导,可学生还是坚持他们的想法。无奈,我只得重新再引导一遍。
课后,张平老师的方法给了我启发:在让学生涂色表示5/4时,先只出示一个圆让学生说单位“1”、涂色,学生肯定会说不够,由此再出示第二个圆,即再出示一个单位“1”,合起来是两个单位“1”,两个圆是两个单位“1”,而不是一个单位“1”。有了这样的铺垫引导,学生就有了深刻的理解。
另外,张平老师还提到一节课练习的.设计要设计好,要注意层次等。听了张平老师的点评及建议,我深深体会到,每节课前,都要认真钻研教材,要精心设计好每一个教学细节,正所谓:细节决定成败。在一定程度上,课堂是由无数个细节组成的。细节是一种长期潜心的准备,细节是可以挖掘、预设的,我们教师要善于把握课堂教学中的每一个细节,从小事入手,以小见大,进而创造出有效、精彩的课堂。
真分数与假分数教学反思教师篇九
本节课的设计,是从学生已有的经验和知识背景出发,提供给学生自主探索的机会,让他们经历知识形成的过程,真正理解和掌握了数学的知识、思想和方法,同时获得广泛的数学活动经验,促进了学生的发展。
在整个教学过程中,我充分体现了以学生为本的教学理念,在学生获得新知识的过程中,大胆放手,引导学生自主探索,突出知识的形成过程,使学生对新知识沿着理解、掌握、熟练的过程不断前进,从而获得最佳教学效果。
真分数和假分数的概念很重要,但概念的数学不能给学生死记硬背,教师如果创设一种动手操作的情境,把分数的意义、分数单位、分数的组成这些知识综合蕴含其中,既为真假分数的概念的理解埋下伏笔,也对学生的自主学习十分有利。
真分数与假分数教学反思教师篇十
学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。但又因真分数在学生心中根深蒂固,而假分数表示什么?在单位“1”不够取的时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生“经历”“感受”和“体验”概念的建立,结论的探索过程显得尤为重要。这一课的教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。
分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三。因此在教学真分数和假分数时,我紧紧抓住每个分数的意义,使学生从分数意义上理解和掌握新课的内容。在教学过程中,我首先通过复习分数的意义,每个真分数的意义,为学生学习真分数、假分数和带分数奠定基础。在出示假分数时先回答分数的分数单位及有几个这样的分数分数单位等内容,使假分数的意义的难点建立在已有知识的基础上,并设计了从33到由学生自己用图表示4个13,学生对假分数的意义就很自然地理解了。
这一环节的设计,是我在经过两次失败的教学后认真反思自己的教学设计及行为,认真解读教材,认真的从学生的角度出发去思考改进的。
第一次我是这样设计的,我课前预设到学生在表示84时会出现问题,课上学生有说是88的有说是44的还有说是2的等等,而我简单的把它定位到是44+44得来的。接下来的内容学生虽然很顺利的沿袭了刚才的模式,但对于假分数的意义并没有真正的理解。
有了第一次的经验,我觉得这里出问题是学生对单位“1”理解的不正确,于是做了如下调整。针对单位“1”的不同做了对比,结果是使学生更加混乱。
经过两次的失败我深深地认识到学生对分数的.理解根本在于两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,才能更清晰地去认识假分数和带分数。所有才有了今天这节课上从分析13的分数单位及个数过渡到学生自己用图来表示43,学生理解63、115更是水到渠成。在这里我并没有用课件直接给出43的图形而是让学生自己用图来表示,利用学生生成的资源为讲授的内容使内容更真实,更便于学生理解,也更具多样性。
在练习的使用和反馈上我想怎样才能更加有实效,于是我把判断和写分数印成片子发给学生,判断题要求学生判断并改正,在学生使用中发现学生修改形式很多,于是我精心挑选了典型的让他们来展台展示,并向学生渗透了数学方法的简洁性、针对性。这样学生不仅进行了练习,深化了对知识的理解,同时还对学生进行了数学思想的渗透,最大化的发挥了这个教学环节的效用。
在假分数的教学上,我考虑要充分发挥教师主导和学生主体的作用,通过把5个圆片平均分给4个同学,用提问的方式启发学生思考怎样分,让学生合作探究实际分,从不同的结果中提炼出假分数和带分数,并自然的理解了假分数和带分数的关系,理解了带分数的意义是一个整数和一个真分数合成的数,也为后面的试一试找到了知识根源。
本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、自育与他育的相互补充中,充分感受与体验知识的发生和发展过程,促进学生的全面发展。
真分数与假分数教学反思教师篇十一
xx省xx市实验小学的xx老师执教一课,朱老师提出要“帮助学生理解真分数和假分数的意义,准确把握真分数和假分数的本质特征”。
课前朱老师做出这样的思考:“学生怎样才算真正理解了真分数和假分数的`意义?首先要结合具体的情境,让学生经历假分数的形成过程,感受并认同假分数产生和存在的合理性。其次,从学习基础分析,当学生面对一个真分数时,已经能从多个不同的角度去理解,并用自己的方式作出解释。
比如,可以从部分与整体(一个物体或一个群体)的层面进行解读,也可以理解为两个量之间的一种关系,即一个量相当于另一个量的几分之几。我认为,只有当学生看到一个假分数时,能利用已有的经验从不同的维度去解读它,对它的理解程度能与真分数等同了,才算真正实现了假分数意义的构建。”
笔者在课前调查中发现,学生们对于分数的认识大致如此:讲一个整体平均分成几份,这样的一份或者几份可以用用分数表示。比如一个月饼平均分成4份,有这样子的2份可以用分数四分之二来表示。但是,学生的认知中还是趋向于认同分子小于分母的情形。这就是学生实际和教学内容之间现实的而又不可回避的矛盾。
真分数与假分数教学反思教师篇十二
真分数和假分数的练习课
教材第72一74页练习十三的第1一13题。
1.通过教学,巩固学生对真分数、假分数和带分数的认识,并能正确地把假分数化成整数或带分数。
2.培养学生综合应用所学知识解题的能力。
3.培养学生复习的良好习惯。
综合应用分数的意义及真分数、假分数和带分数的知识解题。
投影。
(一)导入
谈话:前几节课,我们研究了有关分数的哪些知识?
学生回忆并回答。
老师:今天,我们就来应用这些知识解题,看谁掌握得好。
(二)教学实施
1.完成教材第72页的第1题。
让学生在课本上填一填,并读一读。
2.完成教材第72页的第2题。
老师提示:把一个椭圆或一个六边形看作单位”1“。
让学生看图在课本上写出分数。
提问:还可以把谁看作单位”1“?涂色部分占几分之几?学生自己确定单位”1“,再看图写出分数,集体交流。
3.完成教材第72页的第3题。
请学生根据分数的意义,联系实际,作出判断并说明理由。
4.完成教材第72页的第4题。
学生独立看图写出分数,并读一读。
提问:带分数是由几部分组成的?
5.完成教材第73页的第5题。
学生先自己试着填写,然后汇报自己是怎样想的?
学生可以根据分数的意义直接写出答案,也可以根据题意列出除法算式,再根据分数与除法的关系写出答案。
6.完成教材第73页的第6题。
老师指导学生从左往右看,从左往右填。
7.完成教材第73页的第7题。
学生独立完成,说一说自己是怎样想的?
8.完成教材第73页的第8、9题和第74页的第11题。指导学生仿照求一个数是另一个数几倍的方法列出除法算式,再根据分数与除法关系写出答案。
9.完成教材第74页的第10题。
请学生用假分数和带分数表示图中的涂色部分。
10.完成教材第74页的第12题。
让学生看表回答教材上的问题,然后引导学生找出规律。
11.完成教材第75页的第13题。
学生根据题目要求写出答案,并集体交流,说一说自己是怎样想的,巩固对真分数和假分数意义的理解。
(三)思维训练
3、在括号里填上”“、”“或”=“。
(1)a=+,a()1。
(2)b=+,b()2。
(3)c=++,c()3
(四)课堂
通过今天的复习,学会正确应用真分数、假分数和带分数的有关知识,灵活解决一些数学问题。
真分数与假分数教学反思教师篇十三
真分数、假分数的概念,学生理解起来并不是特别的困难,通过前一阶段的学习,不少学生已经初步建立了他们的概念,只需进一步完善就可以了,但凭借以往的经验,不少学生却不能将假分数与相应的形结合起来。
通过复习,引出一些分数。
师:你能从这中间找出一些特殊的分数吗?
生:12/7。
师:为什么?
生:分子比分母大。
生:是假分数。
生:分子比分母小的是真分数。
师:你能举出一些真、假分数的例子吗?
学生举例
师:你们写出的这些真、假分数有什么特点?
生:真分数的分子小于分母。
生:假分数的分子大于分母。
生:分子等于分母的是什么分数?
生:真分数。
生:假分数。
师介绍假分数的产生历史:分数产生之初只有分子小于分母的分数,后来才出现了其它的分数。
生;分子等于分母的分数也是假分数。
师:真、假分数除了分子与分母的特点外,还有其它的特点吗?
生:真分数小于1,假分数大于1或者等于1。
师:真分数都小于1吗?
生:一定小于1,因为,只有当分子和分母相等的时候才等于1,分子小于分母肯定比1小。
生:画图的时候,必须将所有的格子涂满才是1,真分数都不能涂满格子。
生:因为分子比分母小,所以分子除以分母肯定小于1。
师:你能用一句完整的话来说说什么样的分数是真、假分数吗?
学生用完整的数学语言叙述真、假分数的概念。
……
师出示分数:1/2、5/5、6/4,学生判断它们是什么分数。并要求学生选择其中的两个用图表示。
师:你认为这三个分数哪一个最容易用图表示?
生:1/2,5/5。
师:6/4呢?
生:不知道怎样画?
生:我先画一个正方形,把它平均分成4份,全部涂上颜色,将画一个同样的正方形,也平均分成4份,其中的两份涂上颜色,合起来就是6/4。
师:我怎么觉得是4/8。
生:把两个正方形看成单位“1”,将其平均分成了8份,取其中的4份,是4/8。
生:第一个正方形用4/4表示,加上第二正方形用的2/4表示,正好是6/4。
生:单位“1”是一个正方形。
生:把一个正方形看成单位“1”,第一个正方形正好用4/4表示,第二个相当于单位:“1”的2份,就是2/4,合起来就是6/4。
生:还可以用数轴表示。6/4是假分数,应该比1大,先画一条数轴,在上面标出0、1、2,将单位“1”平均分成4份,6/4的分数单位是1/4,有6个这样的分数单位。6/4标在1和2的中间。
……
根据以往的经验:假分数的概念并不是这节课的重点,本节课的重点是学生理解假分数的意义,如何帮助学生理解假分数的意义呢?教材上采用的方法是直观的图示,使学生在理解意义的过程中建立概念,这样安排,学生理解概念是没有问题的,但不利于自主建立假分数的意义。如何帮助学生理解假分数的意义呢?教学中我打破了教材的编排顺序,将整个真分数、假分数的认识分成两个相联系的环节,但假分数意义的建立由学生自主完成:通过数形结合,自主建立假分数的意义。这一过程与教材上直接给出直观图相比,难度是有点偏大,在处理这一问题时,借助相应的图示,加强学生间的交流,在师生的不断交流中使学生逐步将假分数与具体的直观图结合起来,从而达到认识假分数的目的。
但是没有想到的是,学生在自主理解假分数物过程中,有了更大的突破,不仅将假分数与直观的图示建立了联系,还和数轴上的点建立了一一对应的关系,这一点是分数教学中的一大难点,不少学生根据分数的意义,分数单位以及假分数与1的关系,找到了数轴上的点与假分数的联结点,使分数的概念真正得以扩展。
真分数与假分数教学反思教师篇十四
使学生进一步掌握假分数与带分数、假分数与整数的互化方法,并能比较熟练地进行互化。
重点、难点:熟练地进行假分数与带分数、假分数与整数互化。
一、假分数与带分数、假分数与整数的互化
1、假分数化成整数或带分数的练习。
24/612/516/172/7121/11
(1)学生独立完成。
(2)说说假分数化成整数或带分数的方法。
2、整数或带分数化成假分数的练习。
1=()/74=()/95=()/110=10/()
3(2/5)=()/52(7/12)=()12
6(2/2)=()/33=2()/6
(1)学生独立完成。
(2)说说假分数化成整数或带分数的方法。
3、假分数与带分数、假分数与整数的互化和分数大小比较的综合练习。
(1)填在书上90页第3题。
(2)反馈交流,说出解题思路和比较方法。
(3)选出好的方法,提高解题水平。
二、综合练习
1、口答,并说说思考方法。
(1)5个1/5是几?10个1/5是几?12个1/5是几?
(2)1里面有几个1/6?4里面有几个1/6?4(1/6)里面有几个1/6?
(3)3里面有几个1/4?有几个1/5?有几个1/8?
(4)2(5/7)里面有几个1/7?3(4/9)里面有几个1/9?
2、在数轴上填写假分数与整数、假分数与带分数。
(1)学生填在书上91页。
(2)说说你是怎样填的。
3、用分数表示商。
15÷1618÷764÷98÷25
16÷1510÷2371÷1025÷8
(1)学生完成,并要求能化成带分数的化成带分数。
教学过程
备注
(2)反馈交流。
4、在括号里填上适当的数。
47分米=()米123分=()小时
219厘米=()米7千克=()吨
53小时=()日1149立方分米=()立方米
(1)独立填空。
(2)交流思考过程。
允许有不同的思考方法。
如47分米=()米,有的同学是除以进率,商直接用带分数表示;而有的同学先写成假分数,然后再化带分数。
5、做同一种零件,林师傅4小时加工了15个,张师傅5小时加工21个。谁做得快些?
独立完成后交流解题思路。
三、课堂
四、作业《作业本》
假分数与带分数、假分数与整数互化学生掌握得较好,但灵活解题能力比较差
真分数与假分数教学反思教师篇十五
上周教学了第四单元的二课时《真分数和假分数》。这节课是一堂概念教学课,主要任务是让学生明确真分数、假分数的概念及将分数分为这两大类的分类标准是什么,初步了解分类标准在分类活动中起着十分重要的作用。
所以教学中我紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的。概念和特征即为水到渠成。
整节课的内容相对来说还是比较简单的,学生掌握起来也比较轻松。在课后的作业里有一个这样的题目:请你用自己的话来理解分子比分母大或者分子和分母相等的分数叫假分数。
有个同学写了一句很有意思的答案:我觉得分子不应该比分母大,因为妈妈总比儿子大。我忍俊不禁,随即在第二天的课上对此答案随性发挥。
联想到在教学分数各部分名称时说到分数线下面的是分母,做为母亲他高高的托着自己的孩子--分子,所以分子在上,分母在下。因为孩子的年龄都要比母亲小,所以分子小于分母是符合实际情况的,那么这样的分数我们叫做真分数,而如果孩子和母亲一样大,或大于母亲了,那么这种情况就不符合实际,这样的分数就叫做假分数。说到这里孩子们都笑了,我知道他们从心里真正领悟了!
真分数与假分数教学反思教师篇十六
真分数和假分数是在学生已经学过分数的意义和分数单位的基础上进行教学的`。只有学习了真分数和假分数,学生才能比较全面的理解分数的概念。
本课许老师主要采用自主探究和合作交流的教学方法,为学生提供充分交流的时间,让学生在观察、操作、分类、比较、交流等活动中,自己领悟出真分数和假分数的意义。因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程。在教学真分数和假分数时,许老师先让学生用一张纸折分数,涂色,再次通过观察图形的涂色部分,采用自主探究、合作交流的方法,体会用假分数表示数量以及数量之间关系的合理性、科学性。
在教学中,老师为学生提供充分的探索与交的意义理解假分数与真分数的内在联系,然后让学生从观察涂色的分数出发,自主探究,以自己的感性经验为基础,对这些分数进行分类、比较,并在小组中交流自己的想法,从而形成表象,进而以归纳的方式抽象出真分数和假分数的本质属性,从而获得了初级概念,然后老师再引导学生,把这一概念的本质属性推广到同一类事物之中,通过这样的教学方法就是学生准确地理解概念,牢固地掌握概念,正确地运用概念。同时学生通过自主探索与合作交流,提升了思维水平,提高抽象、概括等能力,而在整个教学过程中教师只是一个学习的组织者、引导者与合作者。
从学生练习反馈来说,学生对真分数和假分数意义掌握不错,能正确区分真分数和假分数,从而达到这节课的目标。
真分数与假分数教学反思教师篇十七
“真分数和假分数”这节课是在学习了分数的意义后学习的内容,这节课看似没有太多的内容,但是如果认真深挖教材,要讲的东西却很多。本节课教学时,我借鉴了教研室的数学专家张红娜老师的教学方法,借助学生的知识基础和学生的动手操作,辨析概念,掌握概念。
强调数形结合,帮助学生建构概念,这是本节课的主要特点。我很清楚的记得张老师是先让学生用圆片来表示不同的分数,这样做我认为既可以联系旧知,又可以让学生在用圆片表示分数的过程中充分感知分数的大小。先让学生用一张圆片分别表示出它的四分之一、四分之二、四分之三,四分之四,这几个分数学生都能在一张圆片纸上轻松表示出来。然后提出新的问题,如果要表示出四分之五,应该怎样表示?在前边表示分数的基础上,学生通过讨论发现了两种方法:即用四分之四加上四分之一的两个圆片就是四分之五,也可以用四分之三的加上四分之二的两张圆片也可以表示出四分之五。接着又让学生分别表示出四分之七,四分之九等分数。在学生通过动手感知分数后,让学生对这些分数进行分类,因为在做分数的时候学生已经有了基础,所以学生很容易就说出了分数可以根据比1大或者是比1小进行分类,到这时就水到渠成了,再做以总结,就顺理成章的引出了真分数和假分数。
还清楚的记得张老师在讲完这节课后说过这样一句话:学数学就是为了用数学,我从听这节课,又按照这个思路和方法上课后,我感觉到数学确实是这样的。同时我也感觉到,任何一节课,我们只要结合学生已有的知识基础,结合学生的认知特点,站在学生立场上认真钻研教材,教学效果就会更好。教学真的需要我们用心去钻研,去思考。
真分数与假分数教学反思教师篇十八
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机,兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,把学习的权力和时空留给学生,通过观察、操作、猜测、思考、讨论等多种活动,让学生亲历概念的形成过程,主动获取知识。
1、教学内容:
《真分数和假分数》一课是五年级下册第四单元的内容。这部分内容的学习是在学习了分数的意义,然后以对分数、分数单位的熟悉为基础上进行教学的,教材在讲解这一知识点时,应注意分数与“1”的关系,这样既帮助学生理解真假分数的概念,又沟通了新旧知识的内在联系。
2、学情分析:
学生在三年级已经初步认识了分数,知道各个部分的名称,会读、写简单的分数,前一段又学习了分数的意义,熟悉了单位“1”、分数单位等概念,为学习本节课知识打下了基础。另外本课的概念比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、根据教材的内容,学生的年龄、心理特点、学情以及基础教育课程提出的三维目标,我确立了本节课的教学目的:
(1)结合具体情境,经历假分数与带分数的产生过程,理解“真分数”、“假分数”和“带分数”的意义。
(2)能正确读写假分数、带分数,了解假分数、带分数的关系。
(3)寻求探索解决问题的方法,体验数学与日常生活的密切联系。
教学重点:结合具体情境,经历假分数与带分数的产生过程,理解“真分数”、“假分数”和“带分数”的意义及关系。
教学难点:动手操作理解分饼的方法及观察发现分数的特点。
1、分数的产生过程及实际含义的认识,要体现从直观到抽象的思维过程。本节课采用小组合作学习的形式,充分让学生观察、发现、比较的方法相结合,体现以教师为主导和学生在学习过程中的主体地位。
2、学生在和谐的学习气氛中自主探索,通过动手操作、动脑思考、动口表达,学会观察发现、比较分类,更好地学会知识与能力。
本节课力求从学生的实际、兴趣出发,能结合具体情境,在多种活动交流中,经历真分数、假分数和带分数的认知产生的过程,从中理解“真分数、假分数和带分数”的意义;培养学生动手操作、观察、概括等学习数学的能力;整节课林老师能围绕情境激趣、谈话导入,操作探索新知,回顾总结,实际应用等几个教学环节展开教学。
一、注重学生学习兴趣的培养。
兴趣是学生最好的老师,学生只有对数学感兴趣,才能乐学、好学、会学;如,课前老师播放了《西游记》动画片,并让学生一起唱主题歌,缓解了学生紧张的心态,创设一个和谐的学习氛围;通过帮助唐僧师徒四人解决分饼的问题,同时在教学中注重成功的体验,经常激励、鼓励学生,如“不错、真棒、很好、谢谢你”等,使学生从中体验学习数学的成功之处,激发了学生的学习兴趣和求知欲望。
二、落实“以生为主体,以师为主导”,给学生提供创造的空间。
在课堂教学中“导”与“学”的关系尤为重要,教师的“导”的终极目标为了学生的“学”,在这里老师通过学生合作学习、自我演示等过程为学生创设一个对话的舞台,让学生共同分享经验,这一点新课程提倡“课堂应给予学生选择与自由的空间”精神与之相适当。同时老师在引导学生质疑、提出问题,让学生有充分的思考时间,这样就把学习的主动权交给学生;因此,课堂上学生就能提出象4/4是什么分数的问题?为课堂提供了一个很好的学习资源,教师也能及时捕捉信息。这样的教学更富于学生的创造空间,培养了学生的创造精神和创造能力。
三、操作感知,建立概念。
在操作中感知,在操作中学习是新课程的重要教学理念。在教学中教师注重学生的操作,建立表象,理解意义、概念。本课教师能让学生动手操作认识分数外,每次的操作都具有一定的意义。操作一、让学生把1张饼平均分给4人,每人分得多少?使学生巩固了平均分和感知分法。操作二、把3张饼平均分给4人,每人分得多少?在操作中感知分法不同,但份数一样结果也相同,即3个1/4张和3张的1/4都是3/4张。知识的迁移,让学生在把9张饼平均分给4人,每人分得多少张时得到分数9/4和2又1/4。在学生对这些分数有了全面了解、认识后,通过学生观察、比较、概括从中产生了真分数、假分数、带分数;并理解其意义。这样的教学培养了学生的认知数学的规律和概括能力。
四、密切联系生活实际,培养学生应用数学的能力。
从设计的练习,一方面、对本节课的重点知识进行巩固总结。另一方面、从让学生解决分面包、分苹果的问题,提升学生应用数学知识解决生活中的问题,数学源于生活再回归生活;让学生体验数学在生活中无处不在。