当前位置:网站首页 >> 作文 >> 2023年小学数学倒数的认识教案(大全10篇)

2023年小学数学倒数的认识教案(大全10篇)

格式:DOC 上传日期:2023-10-31 00:42:06
2023年小学数学倒数的认识教案(大全10篇)
时间:2023-10-31 00:42:06     小编:念青松

作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

小学数学倒数的认识教案篇一

苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。

认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

掌握求倒数的方法,能熟练得求一个数的倒数。

一、导入新课

问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

二、新授

教学例题

(1)出示例7

下面的几个分数中,哪两个数的乘积是1?

(2)学生回答。

(3)引出概念。

乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

(4)学生举例来说。进行及时的评议。

(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

归纳方法

小组讨论:

全班交流。

求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

问:5的倒数是几?1的倒数是几?

学生回答,并说原因。

追问:0有倒数吗?为什么?

指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

教学“练一练”

学生回答。

提醒学生正确地书写格式。

三、巩固练习。

1、做练习六第17题

学生填书上后,集体订正,并说说是怎样想的。

2、做练习六第18题

指名口头回答,选择两题让学生说说思考的过程。

3、做练习六第19题

重点引导学生讨论每一组数的规律。

4、做练习六第21题

5、做思考题

联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

四、全课总结

这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

五、作业

练习六第20题

(略)

小学数学倒数的认识教案篇二

p27倒数的认识,练习六全部习题。

这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。

2、提一个开放性的问题:看到这个课题,你们想到了什么?

师生共同确定本节课的目标研究倒数的意义、方法和用处。

师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

学生自学后,问:有没有疑问?

师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

(1)师:下面,请大家各自举例加以说明。

(2)学生先独立思考,再交流。

(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)

(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)

(c、以带分数为例;带分数的倒数是真分数。)

(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

(e、以整数为例;整数相当于分母是1的假分数)

学生举例的过程同时将如何寻找倒数的方法也融入其中。

1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

1、完成练一练。

学生独立完成后,集体订正。重点问:8的倒数是几?

2、练习六5(判断)。

3、补充判断:

a、a是自然数,a的倒数是1/a。

小学数学倒数的认识教案篇三

p27倒数的认识,练习六全部习题。

这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

提一个开放性的问题:看到这个课题,你们想到了什么?

(学生各抒己见)

师生共同确定本节课的目标——研究倒数的意义、方法和用处。

研究倒数的意义

师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

学生自学后,问:有没有疑问?

师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

学生自主举例,推敲方法:

师:下面,请大家各自举例加以说明。

学生先独立思考,再交流。

(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

(c、以“带分数”为例;带分数的倒数是真分数。)

(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

(e、以“整数”为例;整数相当于分母是1的'假分数)

学生举例的过程同时将如何寻找倒数的方法也融入其中。

讨论“0”、“1”的情况:

1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)

总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

完成“练一练”。

学生独立完成后,集体订正。重点问:“8”的倒数是几?

练习六5(判断)

补充判断:

a、a是自然数,a的倒数是1/a。

小学数学倒数的认识教案篇四

活动目标:

1、能楚地口述10以内数量的排列顺序;
知道它们是顺数(一个比一个多1),还是倒数(一个比一个少1)

2、对生活中运用顺、倒数的事例感兴趣。

能将用过的物品摆放整齐。

活动准备:

教具;
一段交通红、绿灯和电梯上、下的数字显示录相;
按顺、倒数排列的长条数,点卡各1张。

活动过程:

小组操作活动,以轮组方式进行。

第一组:看大小标记排数卡或点卡。

第二组:按标记接着印。

第三组:操作自制顺序卡片,上、下电梯、排数卡。

学习顺、倒数。

讨论小组活动情况。

教师提问:“刚才你玩的是什么,你是怎么做的,怎么知道是这样做的,数字和点子是怎么排的?”

出现依序排列的1至10和10至1的长条数、点卡,帮助幼儿了解从小(或少)数到大(或多)就叫做顺数,从大(或多)数到小(或少)就叫倒数;
顺数时后一个数总比前一个数大(或多1),倒数时后一个数总比前一个数小(或少1)。

师生共同玩顺、倒数的游戏。

教师或一位幼儿指一个数,请其余幼儿从这个数开始顺数或倒数。

了解顺、倒数在日常生活中的运用。

教师提问引起幼儿对顺、倒数运用的关注,“我们平时还在哪儿见过或用过顺、倒数的呢?

用倒记时方式,开展“比比谁的反应快“的游戏活动。

看录象,判断其中数的运用是顺数还是倒数。

教后感:通过上节课的学习,孩子对这节课掌握的较好。操作时准确率较高。

小学数学倒数的认识教案篇五

问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

二、新授

教学例题

(1)出示例7

下面的几个分数中,哪两个数的乘积是1?

(2)学生回答。

(3)引出概念。

乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

(4)学生举例来说。进行及时的评议。

(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

归纳方法

小组讨论:

全班交流。

求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

问:5的倒数是几?1的倒数是几?

学生回答,并说原因。

追问:0有倒数吗?为什么?

指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

教学“练一练”

学生回答。

提醒学生正确地书写格式。

三、巩固练习。

1、做练习六第17题

学生填书上后,集体订正,并说说是怎样想的。

2、做练习六第18题

指名口头回答,选择两题让学生说说思考的过程。

3、做练习六第19题

重点引导学生讨论每一组数的规律。

4、做练习六第21题

5、做思考题

联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

四、全课总结

这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

五、作业

练习六第20题

小学数学倒数的认识教案篇六

教学目标:

1.知道倒数的意义。

2.经历倒数的意义这一概念的形成过程。

3.会求一个数的倒数。

4.培养学生合作学习,激发学习兴趣,让学生体验学习数学的快乐。

教学重点:

知道倒数的意义,会求一个数的倒数。

教学难点:

1和0倒数的问题

教学关键:

掌握倒数的意义。

教学过程

一、谈话导入

师:同学们,听说我们文城中心小学要举行计算比赛,你们想参加吗?

生:想。

生:分数乘法。

师:我们来算一算怎么样?(出示口算卡算一算。)

生:好。

师:你们的口算不错,今天要研究的这几道题肯定难不倒你们,但要想发现它们的秘密,必须得有一双火眼金睛才行哦!

二、揭示倒数的意义

1、出示例1:先计算,再观察,看看有什么规律。

3/8×8/37/15×15/75×1/51/12×12

师:上面这几道算式你能很快地算出结果吗?

生:能。(指名上去写结果)

师:你们算得真快!认真观察一下算式,有什么发现吗?先把你的发现与同桌交流一下。

(交流完后请个别学生说一说)

生:乘积都是1。(师板书:乘积是1)

师:还有别的发现吗?(相乘的两个数有什么特征?)

生:相乘的两个数的分子、分母正好颠倒了位置。

师:你们能写出这样的两个数吗?

生:(齐)能。

2、让学生自由写后再归纳倒数的意义。

师:你们写的算式乘积都是多少?

生:乘积都是1。

师:像这样乘积是1的两个数,我们把它们叫做互为倒数。(师又接着板书:的两个数叫做互为倒数。)这也就是这节课我们要学习的内容。(板题:倒数的认识)

(让生齐读课题和倒数的意义)

3、理解“互为倒数”的含义。

师:“乘积是1的两个数互为倒数.”你有不理解的地方吗?

生生交流后归纳:因为倒数是表示两个数之间的关系,这两个数是相互依存的,不能单独存在。(举例说明:如3/8和8/3,可以说3/8和8/3互为倒数,也可以说3/8是8/3的倒数,但不能说3/8是倒数)

师:好像以前也学过有这样关系的两个数,还记得吗?

生:记得,是因数和倍数。

三、探索求倒数的方法

1、出示例2:下面哪两个数互为倒数?

3/567/25/31/612/70

让学生说,师板书:3/5――→5/3

6――→1/6

师:你是怎样找一个数的倒数的?

生:把分子、分母交换位置。(师板书在箭头上面)

师:那6的倒数怎么找?

生:把6看作6/1,然后再交换分子、分母的位置。

2、师再次引导学生观察以上的数,哪两个数互为倒数?哪些数没有找到倒数?引发学生质疑。

生:1和0有倒数吗?那它们的倒数是什么呢?为什么?

同桌之间再次交流得出:1的倒数是1,0没有倒数。(师相机板书)

3、总结求一个数的倒数的方法:求真分数和假分数的倒数只要交换分数的分子、分母的位置,而求整数的倒数要把整数看作分母是1的分数,再交换分子、分母的位置。

4、引导学生打开课本学习

四、巩固练习

1、课本24页做一做

2、互说倒数。(25页练习六第2题,同桌合作,师生合作)

3、25页第3题:下面的说法对不对?为什么?

(1)7/12与12/7的乘积为1。所以7/12和12/7互为倒数。()

(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互为倒数。()

(3)0的倒数还是0。()

(4)一个数的倒数一定比这个数小。()

4、第4题。

五、课堂小结。

这节课我们学习了什么?你学到了什么知识?能说一说吗?

板书设计:

倒数的认识

(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1

乘积是1的两个数互为倒数。

(2)3/567/25/31/612/70

分子、分母交换位置

3/5――――――――――――→5/33/5的倒数是5/3

分子、分母交换位置

6=6/1―――――――――――→1/66的倒数是1/6

1的倒数是1,0没有倒数。

六年级《倒数的认识》

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

小学数学倒数的认识教案篇七

倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数.待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的.

教学内容:教材23页的内容以及练习六1至6题.

小学数学倒数的认识教案篇八

:六年级上册第二单元倒数的认识。

使学生理解倒数的意义,掌握求倒数的方法。

提高学生观察、比较、、概括的能力。

感悟“变通”的数学思想。

:倒数的意义与求法。

:理解“互为”的意义,明确倒数只是表示两个数间的关系。

(生:上下两部分调换了位置,变成了另一个字)

师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

再出示“吴”,让学生得出“吞”。

引导质疑。

生:什么是倒数?

生:倒数是指一个数吗?

生:倒数应该怎样表述?

生:怎样求倒数?

生:倒数是不是一定是分数?

生:倒数有什么用?

生:是不是每个数都有倒数?

游戏比赛,理解倒数的意义。

师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?

好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

准备好了吗?开始……

师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个

师:为什么能写这么多呢?你们有什么窍门吗?

生:因为我们所写的这两个数的乘积都是1。将其中一个分数的'分子分母颠倒就能写出另一个数。

揭示倒数的意义

师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。

师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本例1,并找出倒数的意义。

师板书:乘积是1的两个数互为倒数

你认为哪个词非常重要?你是如何理解“互为”的?生回答

(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

强调:(1)乘积必须是1。

只能是两个数。

倒数是表示两个数的关系,它不是一个数。

小组探究求一个倒数的方法

师:同学们知道了什么是倒数,你能求出一个数的倒数?

请大家打开课本,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

,内化提高。

反思,发展能力。

接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

小学数学倒数的认识教案篇九

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

生:如果把0.25化成分数就是1/4,4就可以看成4/1,分子和分母也调换了位置。

生:老师,如果分子是0的话,怎么办?

师:这个问题我们记着,待会解答好吗?

生:好

师:根据这一特点你能写出一个数的倒数吗?

生:能

师:试一试!

师在黑板上出示3/57/2,写出它们的倒数。

生汇报,并汇报写的方法。

师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)

师:那18的倒数是什么?它可是没有分子和分母呀?

生:把18看成是分母是1的分数,再把分子分母调换位置。

师根据学生的回答及时板书。

师:那1又2/7的倒数呢?

生思考。

生1:1又2/7的倒数是1又7/2。

生2:不对,要先把1又2/7化成假分数9/7,再交换位置。1又2/7的倒数是7/9。

师:哪个答案才是正确的呢?

我们一起来检验检验。

怎么检验呢?(生齐说看它们的乘积是不是1。)

师板书乘法算式,计算带分数乘法时,要先把带分数化成假分数,……

生1:老师,两个带分数相乘我们不用去计算,因为带分数大于1,两个带分数相乘的积肯定要大于1。

师:你分析得很透彻,不错,同学们,给她掌声。

师生一起算1又2/7×7/9=1,得出1又2/7的倒数是7/9。然后小结求带分数的倒数的方法。

师:再来一题:0.2的倒数是()。

生1:把0.2先化成分数是1/5,所以它的倒数是5。

生2:我还可以想:0.2和几相乘的乘积是1?0.2×5=1,所以0.2的倒数是5。

师:你根据倒数的意义来求它的倒数,这种方法也不错。

那0.3的倒数呢?

一学生很快举起了手:我就想0.3和几相乘的乘积是1?……哦,不行,还是要把0.3化成分数来求它的倒数。0.3的倒数是10/3。

师:看来我们求小数的倒数一般方法要……(学生齐说)

师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

生1:0

生2:不对,没有。

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、……把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。)

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个带分数的倒数要先化成假分数;是求一个小数的倒数要先化成分数(师补充,而且是一个最简分数);如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

师:如果是一个真分数或假分数呢?

生:只要把分子分母调换位置就行了。

师:看看我们的板书还要加上什么?

生:0除外,因为0没有倒数。

生齐读求一个数倒数的方法。

小学数学倒数的认识教案篇十

新人教版六年级数学上册的例1。

通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

理解倒数的意义,学会求倒数的方法。

熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

多媒体课件。

上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。

师:谁还能说出这样的数?(课件出示)

象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

理解倒数的意义。

掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

探究讨论,理解倒数的意义。

(课件出示教材例1的四个算式。)

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

深化理解。

乘积是1的两个数存在着怎样的倒数关系呢?

举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

运用概念。

讨论求一个数的倒数的方法。

所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)

小结:求一个数(0除外)的倒数,只要把这个数的`分子、分母调换位置。)

怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

填一填。(出示课件)

乘积是()的()个数()倒数。

a和b互为倒数,那a的倒数是(),b的倒数是()。

只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

一个真分数的倒数一定是()。

判断题。(演示课件)

5/3是倒数。()

因为3/4×4/3=,所以4/3是倒数。()

真分数的倒数大于1,假分数的倒数小于1。()

因为1/4+3/4=1,所以1/4和/4互为倒数。()

说一说。(课本的第3题)

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

倒数的认识

乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。

2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服