当前位置:网站首页 >> 作文 >> 2023年初中数学对教案人教版有要求吗 人教版初中数学教案(优秀10篇)

2023年初中数学对教案人教版有要求吗 人教版初中数学教案(优秀10篇)

格式:DOC 上传日期:2023-10-21 01:54:06
2023年初中数学对教案人教版有要求吗 人教版初中数学教案(优秀10篇)
时间:2023-10-21 01:54:06     小编:灵魂曲

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。写教案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

初中数学对教案人教版有要求吗篇一

教学目标:

1.巩固对常见平面图的认识,初步体验平面图形之间的关系。

2.发展幼儿创造力思维灵活性和动手操作能力。

3.初步认识了解公用边,知道公用边的特征及含义。

教学准备:

ppt、美工垫、雪糕棒

教学过程:

一、导入活动:巩固对常见平面图形的认识。

播放ppt 第1页请幼儿观看,这是什么呀?今天老师要给小朋友变个魔术,小朋友可要看仔细哦。

二、讲解“公用边”

2播放ppt第4-6页。成功了吗?我用5根雪糕棒也拼搭出了两个三角形,咦?奇怪了,同样是两个三角形,为什么前面我用了6根雪糕棒,而现在我只用了5根雪糕棒也能搭出两个三角形?(引导幼儿说出两个图形都用到中间的一根雪糕棒)

小结:原来这根雪糕棒即是上面三角形的一条边,也是下面三角形的一条边,两个三角形都用到了这条边,(教案出自:屈老师教案网)我们就把这条两个图形都用到的边叫做“公用边”。

三、创设情境,引发幼儿对闯关游戏的兴趣,启发幼儿用雪糕棒拼搭出图形,感知图形公用边的特征。

1.播放ppt电话声音,教师模仿接电话,告知电话内容,引入闯关游戏。

2.引导幼儿用公用边的方法拼搭出要求的图形,进行闯关游戏。

第一关:播放ppt第7---10页,引导幼儿用6根雪糕棒,用公用边的方法拼搭出一个三角形,和一个正方形,并找出它们的公用边。

3.幼儿自由操作,教师巡回指导。

4.幼儿展示自己拼搭成果,并找出公用边。

小结:集体观看ppt第11---12页,原来6根雪糕棒可以拼搭出方向不同的图形,而且每个图形都有一条它们的公用边。

第二关:播放ppt第13---14页,引导幼儿用公用边的方法,用最少的雪糕棒拼搭出2个正方形和1个长方形,并找出它们的公用边。

5.幼儿自由操作,教师巡回指导。

6.幼儿展示自己拼搭成果,并找出公用边。

小结:集体观看ppt第15页,引导幼儿感知用最少的雪糕棒拼搭出的每一条边都是长方形和正方形的公用边,这些边共组成了一个长方形和两个正方形。

7.集体观看ppt第16---17页,听音乐《大家一起喜洋洋》与同伴一起高兴的跳舞,体验闯关成功的乐趣。

四、教学延伸。

个三角形。

初中数学对教案人教版有要求吗篇二

设计理念

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。

教学目标

1、知识与技能

(1)掌握数轴的三要素,能正确画出数轴。

(2)能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

2、过程与方法

使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

3、情感态度与价值观

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

重点正确掌握数轴画法和用数轴上的`点表示有理数。

难点有理数和数轴上的点的对应关系。

教学过程

1、创设情境,让学生根据家乡的地图尝试画出自己家相对沙墩中学的位置,让学生初步体会生活中的平面问题可以简化为具体的直线问题来研究。

3、让学生仔细观察温度计,对比学生所画图形与温度计的区别,学生会发现,温度计上有0刻度,0刻度以上为正数,0刻度以下为负数,那我们能否用类似温度计的图形来表示有理数呢?从而引出课题――数轴。

初中数学对教案人教版有要求吗篇三

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(poisson)分布及其应用。

3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

5.会求随机变量函数的分布。

初中数学对教案人教版有要求吗篇四

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题。

教学重难点

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题。

教学过程

【示范举例】

例1:数列是首项为23,公差为整数,

且前6项为正,从第7项开始为负的等差数列

(1)求此数列的公差d;

(2)设前n项和为sn,求sn的值;

(3)当sn为正数时,求n的值。

初中数学对教案人教版有要求吗篇五

掌握用因式分解法解一元二次方程.

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

c.(x+2)2+4x=0,∴x1=2,x2=-2

d.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

初中数学对教案人教版有要求吗篇六

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系

3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

下一页更多精彩“初中一年级数学教案”

初中数学对教案人教版有要求吗篇七

教学目的:

(一)知识点目标:

1、了解正数和负数在实际生活中的应用。

2、深刻理解正数和负数是反映客观世界中具有相反意义的理。

3、进一步理解0的特殊意义。

(二)能力训练目标:

1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2、熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1、认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。

2、下列说法中正确的()

a、带有“一”的数是负数;b、0℃表示没有温度;

c、0既可以看作是正数,也可以看作是负数。

d、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1.仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

(2)2001年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家2001年商品进出口总额的增长率。

复习巩固:练习:课本p6练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第3、6、7、8题。

课后反思:————

初中数学对教案人教版有要求吗篇八

教学内容

课本第139页.

教学目标

1.知识与技能

会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.

2.过程与方法

经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.

3.情感态度与价值观

经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用.

重、难点与关键

1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.

2.难点:用尺规画一个角等于已知角.

3.关键:引导学生积极参与画图的数学活动过程,才能熟练掌握画图步骤.

教具准备

一副三角板、量角器、多媒体设备、投影仪.

教学过程

一、引入新课

1.投影一个五角星的图案,请学生观察图形.(如右图)

初中数学对教案人教版有要求吗篇九

1、了解推理、证明的格式,理解判定定理的证法。

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导

1、教师教法:启发式引导发现法。

2、学生学法:积极参与、主动发现、发展思维。

三、重点•难点及解决办法

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进行推理。

(三)解决办法

1、通过教师正确引导,学生积极思维,发现定理,解决重点。

2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片。

六、师生互动活动设计

1、通过设计练习,复习基础,创造情境,引入新课。

2、通过教师指导,学生探索新知,练习巩固,完成新授。

3、通过学生自己总结完成小结。

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

初中数学对教案人教版有要求吗篇十

设计思想:

溶解度是第七章教学的重点和难点。传统教学模式把溶解度概念强加给学生,学生对概念的理解并不深刻。本节课从比较两种盐的溶解性大小入手,引发并活跃学生思维,设计出合理方案,使其主动地发现制约溶解度的三个条件,然后在教师引导下展开讨论,加深对“条件”的认识。这样设计,使以往学生被动的接受转化为主动的探索,充分调动了学生善于发现问题,勇于解决问题的积极性,体现了尝试教学的基本观点:学生在教师指导下尝试,并尝试成功。

教学目标:

1、理解溶解度概念。

2、了解温度对溶解度的影响。

3、了解溶解度曲线的意义。

教学器材:胶片、幻灯机。

教学方法:尝试教学法教学过程:

一、复习引入

问:不同物质在水中溶解能力是否相同?举例说明。

答:不同。例如食盐能溶于水,而沙子却极难溶于水。

问:那么,同种物质在不同溶剂中溶解能力是否相同?

答:不同。例如油易溶于汽油而难溶于水。

教师总结:

物质溶解能力不仅与溶质有关,也与溶剂性质有关。通常我们将一种物质在另一种物质中的溶解能力叫溶解性。

二、讲授新课

1、理解固体溶解度的概念。

问:如何比较氯化钠、硝酸钾的溶解性大小?

生:分组讨论5分钟左右,拿出实验方案。

(说明:放给学生充足的讨论时间,并鼓励他们畅所欲言,相互纠错与补充,教师再给予适时的提示与总结。学生或许会凭感性拿出较完整的实验方案,意识到要比较氯化钠、硝酸钾溶解性大小,即比较在等量水中溶解的氯化钠、硝酸钾的多少。但此时大多数学生对水温相同,溶液达到饱和状态这两个前提条件认识不深刻,教师可引导进入下一次尝试活动。)

问:

(1)为什么要求水温相同?用一杯冷水和一杯热水分别溶解氯化钠和硝酸钾,行不行?

(2)为什么要求水的体积相同?用一杯水和一盆水分别溶解,行不行?

(3)为什么要达到饱和状态?100克水能溶解1克氯化钠也能溶解1克硝酸钾,能否说明氯化钠、硝酸钾的溶解性相同?生:对上述问题展开积极讨论并发言,更深入的理解三个前提条件。

(说明:一系列讨论题的设置,充分调动了学生思维,在热烈的讨论和积极思考中,"定温,溶剂量一定,达到饱和状?这三个比较物质溶解性大小的前提条件,在他们脑海中留下根深蒂固的印象,比强行灌输效果好得多。)

师:利用胶片展示完整方案。

结论:1、10℃时,氯化钠比硝酸钾更易溶于水。

师:若把溶剂的量规定为100克,则某温度下100克溶剂中最多溶解的溶质的质量叫做这种溶质在这个温度下的溶解度。

生:理解溶解度的涵义,并思考从上述实验中还可得到什么结论?

结论:2、10℃时,氯化钠的溶解度是35克,硝酸钾的溶解度是21克。

生:归纳溶解度定义,并理解其涵义。

2、根据溶解度判断物质溶解性。

师:在不同的温度下,物质溶解度不同。这样,我们只需比较特定温度下物质溶解度大。生:自学课本第135页第二段并总结。

3、溶解度曲线。

师:用胶片展示固体溶解度曲线。

生:观察溶解度曲线,找出10℃时硝酸钠的溶解度及在哪个温度下,硝酸钾溶解度为110克。

问:影响固体溶解度的主要因素是什么?表现在哪些方面?

答:温度。大多数固体溶解度随温度升高而增大,例如硝酸钠;少数固体溶解度受温度影响不大,例如氯化钠;极少数固体随温度升高溶解度反而减小,例如氢氧化钙。

初中人教版化学溶解度教学设计2

一、说教材

《物质的溶解性》是鲁教版初中化学九年级全一册第1单元第3节的内容。本节课主在前两节的基础上,定量研究溶质在一定量水中溶解的限度。本节包括溶解度和溶解度曲线两个方面的内容。在“溶解度”部分介绍了物质的溶解度与溶剂和温度的关系说明了物质在一定溶剂和温度下溶解量是有一定限度的,并以此得出了固体溶解度的概念。然后,探究溶解度曲线——包括回执溶解度曲线、分析和应用溶解度曲线、比较溶解度数据表和溶解度曲线的区别、体会列表法和作图法两种数据处理方法的不同作用等,引导学生体检数据处理的过程,学习数据处理的方法。最后,简单了解气体的溶解度、并结合有关汽水的讨论,说明气体的溶解度与压强和温度密切相关。

过渡:这是对教材的认识,下面说一下本班学生的情况。

二、说学情

基于溶液在化学(科学)研究和生产、生活中有着广泛的应用,学生只定性地了解溶液的组成和基本特征是不够的,还应定量地认识溶液。本节以溶解度为核心,展开对溶液的定量研究。从定性研究到定量研究,知识内容上加深了,研究方法上要求提高了,对学生的能力要求提升了一个层次。在本节学习中所需的有关直角坐标系中曲线等数学知识,学习已经具备,一般不会造成学习障碍。学生可能会遇到的问题是:对溶解度概念的运用时忽略条件;对问题缺乏科学全面的分析而产生一些模糊或者错误的认识,例如认为饱和溶液一定是浓溶液,认为增加(或减少)溶剂的量,固态物质的溶解度也会随之增大(或减少);认为搅拌能使固态物质的溶解加快,也会使其溶解度增大;等等。

过渡:结合教材分析和学情分析,我制定了如下教学目标:

三、说教学目标

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服