总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。那么我们该如何写一篇较为完美的总结呢?下面是小编带来的优秀总结范文,希望大家能够喜欢!
初中数学知识点总结篇一
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形
常见考法
(1)利用平行四边形的性质,求角度、线段长、周长;
(2)求平行四边形某边的取值范围;
(3)考查一些综合计算问题;
(4)利用平行四边形性质证明角相等、线段相等和直线平行;
(5)利用判定定理证明四边形是平行四边形。
(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;
(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
初中数学知识点总结篇二
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
初中数学知识点总结篇三
1、配方法;所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成—个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。
2、因式分解法,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,中学课本上介绍有提取公因式法、公式法、分组分解法、十字相乘法等都是因式分解的常用手段。
3、换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、构造法;在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起—座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
5、反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为两种:一种是相反的结论只有一种,另一种是相反的结论有无数种。前者需要把相反的结论推翻,后者只要举出一个反例,就达到了证明的目的。
初中数学知识点总结篇四
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.
1、根据自变量的取值范围对函数进行分段.
2、求出每段的解析式.
3、由每段的解析式确定每段图象的形状.
1、自变量变化而函数值不变化的图象用水平线段表示.
2、自变量变化函数值也变化的增减变化情况.
3、函数图象的最低点和最高点.
初中数学知识点总结篇五
都说兴趣是最好的老师,最重要的是要对数学有兴趣,如果厌烦它,是怎么也提不高的。
(二)、理解能力
数学是理科,理解能力很重要,没有理解能力,你的数学乃至所有理科的学习将举步难行。而理解能力的培养很难,你必须尝试去理解一些对你很难的哲学理论和相对抽象的数学模型。最简单的培养也十分艰辛,需要做到对于一道中等难度的题,看到辅助线能在1分钟以内反应出其做法。其次,对老师所讲的题不仅要懂,而且还要揣摩老师做题时的具体心路历程,这才是为什么很多人数学学得好的基础能力。
(三)、勤奋
我见过很多很努力但仍学不好理科的同学。数学考试的令人无语之处在于只要你认真按老师的要求学习很容易及格,但要想考上145分靠老师的那点练习则远远不够。即使是对于差生来说,学习仍然有简单易行的方法。掌握正确的方法,才能勤奋有所获。
初中数学知识点总结篇六
对于教学方面,我主要从以下六点入手,第一点:总体驾驭教学要点,如该学年,该学期有哪些知识点,重点是什么,难点是什么,如许在平常教学中才有目标。初中数学教学总结第二点:注意和门生一起探究种种题型,我发现门生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习干劲就下去了,如每节课后若偶然间,我都出几题有新意,又不难的相关题型,与门生一起研究。
一、酷爱西席事情,思想前进,团结同志,每天早来晚走,无私奉献,能全面贯彻党的教诲目标,以党员的要求严酷要求本身,仔细完成学校交给的任务和事情,严酷遵守学校的各项规章制度,做到不迟到,不早退,不请病、事假,实事求是地实行学校的各项要求。
二、积极参加种种学习培训,努力进步本身的教诲教学水平
一学期的事情又将结束了,可以说告急繁忙而收获多多。回顾这学期的事情,我执教初(一)、初一(二)的数学学科,事情中有收获和高兴,也有不尽善尽美的地方,为了更好地总结履历,汲取教导,使当前的事情能够有效、有序地举行,现事情总结如下:
三、教学事情和科研事情
如许复习时才有的放矢,复习中什么要多抓多练,什么可临时纰漏,这一点很重要,会间接影响复习结果与结果。固然,要做到这一点,并驾驭得准,必需要有相称永劫间的履历积聚与总结,乃至挫折,不然不可。而我仍在不停探究中,但我相信,只要肯下工夫,就会有所意会。
第三点:,每节新课后注意反应,主要作业与小测中发现门生掌握知识的不足之处,及时加以订正。第四点:要举行一定数目的练习,我阻挡题海战术,但用相称数目标题举行练习倒是需要的,练习时要有目标,抓基础与重难点,渗透数学思维,强调一点是老师在练习要注重门生数学思维的构成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。第五点:就是考前复习中要仔细研究与整理出考试要考的知识点,重难点,要重点复习的标题范例,难度,深度。
[初中数学知识点总结]
初中数学知识点总结篇七
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
初中数学知识点总结篇八
1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。
2. 专心听讲:
(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。
若老师讲到你早先预习时不了解的那部份,你就要特别注意。
有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。
(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。
待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。
3. 课后练习 :
(1) 整理重点
有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麼都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。
(2) 适当练习
重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。
(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。
4. 测验 :
(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。
(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。
(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。