作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?这里我给大家分享一些最新的教案范文,方便大家学习。
小学五年级数学教案篇一
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,培养有条理思考的习惯。
2、在1~100的自然数中,能找出某个自然数的所有因数。
会找一个数的因数。
:提高有序思考的能力。
一、创设情境,激情导入
师:同学们喜欢做拼图的游戏吗?
也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录. 然后,把你拼摆的过程和你的伙伴说说。
二、合作交流,探索新知
1、学生:用12个小正方形自由拼(画)长方形
(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)
师:你是怎样拼的,说说好吗?
学生代表一边汇报,一边将所拼的图在黑板上进行演示
注意让学生指图说明。
师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?
(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)
同学们用12个小正方形摆出了各种各样的长方形,你能用算式表示出你一
共摆了多少个吗?
学生回答,老师同时板演:
(3种,算式一样的可选择其中的一种说出来。)
及时板书:1×12=12 2×6=12 3×4=12
或:12=1×12=2×6= 3×4
师:由黑板上整理出的算式可见,12的因数有哪些呢?
(1、12 、2、6、3、4)
引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?
(通过以上的拼、画、小组交流,学生已经有所发现。)
学生的答案:
(1)我发现积是12的乘法算式中,它们的因数都是12的因数。
(2)我发现可以利用乘法口诀一对对的找12的因数。
师:谁能按顺序说出来?
(1、2、3、4、6、12)
3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
三、巩固练习
1、独立完成第38页“练一练”第1题,注意关注学生是否注意有序思考。
2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第38页的练一练的第2题。
四、总结与评价
师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?
这节课上下来以后我感想很多,感触也很深。回顾整堂课的教学过程,我认为需要改进的地方还有很多,我只有不断地进行反思,才能不断地完善教学思路,才能更好达到教学目标。下面我就说说我对本课在教学设计上的一些想法和反思。
本课的教学重点是找一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样找一个数的因数,难度并不算大,因此教学例题“找出12的因数”时,我先让学生自己动手拼长方形,让学生们直接感知两个自然数的积等于12的几种情况,使他们在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是12的乘法算式或列出被除数是12的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题。
新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。
小学五年级数学教案篇二
长方体、正方体的体积计算
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
长方体、正方体体积计算。
长方体、正方体体积计算
正方体木块若干。
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长宽高
讲述:如果用字母v表示长方体的体积公式可以写成:v=abh
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:v=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。v=abh=743=84(cm3)
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
完成课本第31页做一做第1、2题。
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
完成练习册中本课时练习。
长方体和正方体的体积
长方体的体积=长宽高
v=abh
正方体体积=棱长棱长棱长
v=aaa=a3
小学五年级数学教案篇三
1、联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识。
2、在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念。
3、会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化。
4、能用准确的数学语言描述思考过程。
师:生活中,常把几个长方体物体包成一个大长方体。这样就会有各种各样的包装。
学生间相互交流了解的情况。
师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?
生:火柴盒、香烟盒或药盒等。
师:这节课,我们一起来讨论、研究问题。(揭题)。
2、试一试:要求摆得出,还要说得明白。
交流:有哪几种?为了方便表达,最大面用字母a表示,次大面用字母b表示,最小面用字母c表示。
归纳:三种不同包法:
a面重叠(上下叠);
b面重叠(前后叠);
c面重叠(左右叠)。
生:6、7、8、9、10、12种等。
师:那么,究竟有几种呢?想试试吗?(生:想!)
师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?
合作学习:
生:包装方式多,记一记,不会重复。
(2)大组交流、汇报。
两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上。
学生汇报:总共有9种不同的包法。(见下图)
师生归纳:按接触面思考:a、b、c各一种;ab、ac、bc各两种。
师:这种方法怎么样?它是按什么思考的?
生:按接触面来思考;这样思考有序,不容易漏掉。
生:按上下、前后、左右的方向拼摆,有3种包法。
师:大家从中受到什么启发?还可以怎样考虑?。
生:哦,我明白了!还可以将两个b面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法。
生:还可以将两个c面重叠(前后叠)的长方体看作。
生:(抢着说)对,对!它也有3种包法。因此6个长方体共有33=9种不同的包法。
师:这种方法怎么样?
生:这种方式很好,很清楚。
师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体。2个小长方体间的位置不同,就得到了3个不同长方体的包装问题。这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要。
4、师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算。
师:哪个表面积更小些呢?
生:可以算一算。
师:假设a面面积为6,b面为3,c面为2。
生:62+312+212=72,64+36+212=66,64+312+26=72。这几个表面积都比较小。
教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法。
学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省。
师:是不是厂商对商品的包装都考虑节省材料呢?
生:不一定。
师:分小组,互相观察带来的其他物品,说说自己的看法。
学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,有的考虑方便不同的需要就有不同的标准。
师:这节课对你有什么启示?
生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小。
小学五年级数学教案篇四
师:怎么列式?
生1:21.45÷15。
师:我们会计算2145÷15,那么21.45÷15怎么算出它的结果呢?先独立思考,试做一下,然后在小组内讨论吧!
教师巡视,参与小组讨论。
师:哪个小组派个代表来向全班同学汇报:
组1:我们组是把21.45米化成2145厘米,算式就改写成2145÷15,变成了整数除法,结果是143厘米,再把143厘米化成1.43米。
师:有道理!还有不同的做法吗?
组2:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商也应缩小100倍,正确的结果是1.43。
组3:我们小组是列竖式计算出来的。接着把做的竖式放在展示台上展示。
师:各小组都想出了办法,把21.45÷15的结果算出来了。现在老师要提一个问题:哪个小组想的办法更好?今后都能使用。小组继续讨论。
组4:组3想的办法更好,没有局限性,碰到类似的算式都可以用这样的竖式计算。
师:大家同意吗?
(学生齐答:同意。)
师:好,那么大家一起来观察这个竖式。哪位同学要提出什么问题?
生2:商的小数点是怎么来的?
生3:商的小数点是和被除数的小数点对齐。
生2:商的小数点为什么要和被除数的小数点对齐?
师:谁能解决这个问题?
生4:因为商的最高位在个位上,而小数点应该在个位的后面,所以小数点要和被除数的小数点对齐。
生5:如果商的小数点不和被除数的小数点对齐,商就不是1.43,商不是1.43,那么验算的话,商和除数相乘就得不到被除数。
生6:除到被除数的个位时还余下6,这时要跟被除数十分位上的4合起来一起除以15,合起来的数是64个十分之一,所以得到的商是4个十分之一,那么4应该写在十分位上,商的小数点自然就要和被除数的小数点对齐。
师:说的太精彩了!(学生自发地给以掌声鼓励)
师:现在请同学用自己的话向同桌说说除数是整数的小数除法的方法。
……
1、自主探究,小组讨论。教师出示例题后,就让学生独立思考,再在小组内讨论,找到解决的方法,这种把学习的主动权交还给学生,让学生自己去经历探究的过程,有利于方法的掌握和法则的总结。在小组内每个学生能充分发表自己的意见,能听取到别人的意见得到一些启发,也能给别人以提示,最后能在小组内达成一致意见。
2、小组汇报,增加见识。因为在一个小组里形成了一种意见的定势,而通过小组汇报,班级里就会出现不同的见解、思路和方法。这样,让同学大开了眼界,知道解决一个相同的问题,有不同的方案。最后还让学生讨论哪种方案更具代表性和科学性。这样,学生思维的发散性和开阔性不仅得到了培养,而且,学生对“最优化”的意识进一步得到了提高和巩固。
3、问题从学生中来,到学生中去。提出一个问题往往比解决一个问题更重要,学贵与疑。当学生提出问题后,教师不急于回答,马上把问题抛给学生,这样,大胆、充分地相信学生的智慧和能力,给学生以极大的信心。结果,学生果不负教师的期望,一一做了回答。并说得十分精彩。
4、教师是红娘,不是第三者。令人欣喜的是,在这个片段里能听到学生的追问。并且,其他学生,不等教师开口就情不自禁地回答起来。这样的情景是老师最喜欢看到的。出现这样的情景与教师的角色定位是分不开的。
5、变替蝶破茧,为咬茧自出。有意义的学习并非简单的被动接受过程,而是学生主动建构的过程,自主探索是新课程倡导的学生学习数学的重要方式之一,学生总是在自主探索的学习活动中获得亲身的体验,可以说,学生参与自主探索的学习活动越主动充分,所获得的体验就越深刻、丰富,这样,为学生今后的学习和发展就提供了“动力源”,真正实现了“教是为了不教”。
总之,整个片段教学下来,学生的思维得到了发展,能力得到提高,学生的情绪很饱满,参与的积极性很高。但也感觉到有遗憾的地方,致使有的学生还是坚持自己的观点。比如:教师没有进一步引导、讲解和举例,让学生充分认识到“组1:我们组是把21.45米化成2145厘米,结果算式就写成了2145÷15,结果是143厘米,再把143厘米化成1.43米。”这个方案的不足;当组2说出:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商应缩小100倍,得到1.43。”这个方案时,没有让组2的同学充分说出这样做的道理或理由。其实,这个方案就是把被除数看作整数,根据整数除以整数的方法算出商,然后再根据被除数缩小多少倍,除数不变,商也缩小多少倍的规律得到商是1.43。实际上也就是要在商143里点上小数点,追问学生商的小数点该点在哪?这样做了话的话就能和组3同学的方案整合到一起了。可惜,当时老师没有按上面的做法去做。
小学五年级数学教案篇五
学习目标:
使学生在具体情境中探索确定位置的方法,并能在平面图上使用数对确定指定事物的位置。
学习重难点:
1.理解数对的含义,会用数对表示具体情境中的物体位置。
2.能在方格纸上用数对确定位置,提高用数对确定位置的能力。
3、发展学生的空间观念,使学生体验确定位置的重要性,体验数学与生活的联系。
学法指导:小组讨论、合作探究
学习过程:
课前
【学案导学】
课前激趣导入课题 板书:确定位置
(一)自学课本例1、
1.认识“列”和“行”
你知道确定一个物体的位置用几个数据吗?什么是“列”,什么是“行”?( ) 着的一排是列,( )着的一排是行。
2.用“列”和“行”来确定位置
现在你能用“列”和“行”来描述一下小丽和小军的位置吗?
3.用数对来确定位置
确定一个同学的位置,用了( )个数据。你能把“第二列第三行”换成一种更简洁的方法吗?( )
现在你能用简洁的方法来表示小丽和小军的位置吗?(请表示出来)
4.确定第几列一般从( )往( )数,确定第几行一般从( )往( )数。
(二)学生独立完成例2
组内交流,班级展示。
课中
【小组合作】
合作要求:
由组长对小组活动进行组织和分工,每个题有中心发言人,其他人补充,自学中出现错误的人在组内学会。小组内解决不了的问题划下来。
【班级展示】
小组合作交流后,组长整理,确定每一题的中心发言人,展示自学体会、好的见解和方法,展示存在的问题和困惑。(教师适时点拨)
【质疑探究】你还有什么疑惑请提出来,大家来共同探讨。
【自悟自得】
【测评反馈】
1.填空
(1)竖排叫做( ),横排叫做( )。
(2)数对中的第一个数表示( ),第二个数表示( );两个数之间用( )隔开,两个数的外面用( )括起来。
(3)小红坐在第3列第5行的位置,用数对表示是( )。
(4)(1,3)表示第( )列第( )行;(3,1)表示第( )列第( )行。
(5)在电影票上表示座位用( )和( )表示。
2.选择
(1)在平面内确定一个点的位置一般需要的数据是( )个。
a.1 b.2 c.3 d.4
2.判断。
(1)点(3,2)与点(2,3)是 同一个点。( )
(2)小明在班上的位置是(4,5),表示他坐在第4行第五列。( )
(3)(4,5)和(5,4)位置上坐的是同一个人。( )
【游戏升华课题】
利用所学知识学生互送礼物。
课后
练习三第五题
小学五年级数学教案篇六
1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
使学生理解分数的基本性质。
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
课件,五年级数学学具盒,计算器。
一、呈现材料,发现问题
1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?
花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。
师:听到这里,你有什么想法吗?或你有什么话要说吗?
生1:我觉得孙悟空很聪明。
生2:我认为三只小猴分到的饼是一样多的。
生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。
(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?
组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。
组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。
组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)
组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。
组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。
3、组织讨论
(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)
板书1/4=2/8=3/12
(2)你能从图上找到另一组相等的分数吗?
板书3/4=6/8=9/12
4、引入新课
师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。
生:分数的分子和分母变化了,分数的大小不变。
师:我们今天就来共同研究这个变化的规律。
5、引导猜测
师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。
生1:分子和分母都乘以一个相同的数,分数的大小不变。
生2:分子和分母都除以一个相同的数,分数的大小不变。
生3:分子和分母都加上一个相同的数,分数的大小不变。
生4:分子和分母都减去一个相同的数,分数的大小不变。
师:根据学生回答板书
二、活动研究,探究规律。
1、引导研究,感知规律
生:举一些例子来验证
师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?
生:分子和分母都乘以一个相同的数,分数的大小不变。
师:好,我们就选这个,试试看。
学生以小组为单位进行尝试验证,教师作适当指导。
反馈:根据学生回答板书
1/2=0.5
1×2/2×2=2/4=0.5
1×3/2×3=3/6=0.5
师:看了这些小组的举例验证,能说明这个猜测有道理吗?
有什么要补充的吗?
(学生没有答出0除外)
师:谁能写出几个与1/3相等的分数。比一比谁写的多。
生回答,师板书1/3=2/6=3/9……
师:这样写得完吗?
生:不能
师:分子和分母是不是可以乘以所有的数。
生:0要除外。
师:为什么0要除外呢?
生:0不能做除数,也不能做分母。
2、自主研究,理解规律
师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。
学生自由选择,教师适当进行调配。
师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。
学生小组合作进行研究,教师作适当指导。反馈交流
小结
师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。
出示课题:分数的基本性质
师:你们认为性质中哪几个字是关键字。
生:“都”,“相同的数”,“0除外”
生齐读投影上的分数的基本性质
3、沟通说明,揭示联系。
师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。
生:商不变性质
出示商不变性质
师:分数的基本性质与商不变性质有什么相通的地方吗?
生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。
师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。
出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)
师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。
生:分数的基本性质。
[评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。
例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要破译它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。
师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?
三、应用性质,解决问题。
1、出示例2
2、多层练习,巩固深化
(1)书本试一试
游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)
四、课堂总结
师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?
生1、我们是用举例的方法学的。
生2、我们是用验证的方法学的。
生3、我们是通过比较发现了规律。
师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。
师:我这里还为大家准备了一个故事。(哥德__猜想加陈景润的故事)
师:你听了有什么启发吗?课后同学们可以互相讨论一下。
小学五年级数学教案篇七
整理和复习
教学内容
本单元教材主要包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。
平行四边形、三角形和梯形面积计算是学生掌握了这些图形特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。学到这一单元结束,多边形面积的计算就基本学完。
组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成为已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。
本单元具体的教学内容分析如下:
1、平行四边形的面积。
通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。
2、三角形的面积。
为让学生能自主地探索计算三角形面积的方法,教材除呈现了学生需要解决三角形面积的实际问题外,更重要的是提出了如何把三角形进行转化的要求,这也是学生寻求解决三角形面积计算方法的重要思路。根据不同学生的认知能力,在学生探索三角形面积的计算方法中,教材呈现了多种不同的计算方法以及面积公式推导的方法,目的是在课堂上让每个学生都能充分地参与到探索活动之中。
3、梯形的面积。
这部分教学内容是利用学生前两个基本图形面积计算公式推导的经验,探索梯形面积的计算方法。同时,为了让每个学生都能参与探索活动,教材呈现了多种探索的方法,并说明了不同的探索过程。
4、组合图形的面积。
教材先通过呈现生活中具体物品使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的组合图形,以巩固对组合图形的认识。接着,引导学生学习组合图形面积的计算。所安排的例题及练习除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。
5、整理和复习
这部分内容先把本单元学过的知识进行系统整理,用图示帮助学生回忆本单元所学习的图形面积计算公式的推导过程,沟通各种面积公式及其推导过程的内在联系,再通过不同层次的练习,巩固已学的各种多边形的面积公式,提高应用公式解决简单实际问题的能力。
小学五年级数学教案篇八
教学内容:
教材 89,90页。
教学目标:
1.理解分数加、减法的含义,掌握同分母分数加、减法计算方法,并能正确地进行计算。
2.能与他人交流自己的思维过程和结果。
3.能运用分数加、减法解决简单的数学问题。
教学重点:
同分母分数加、减计算方法。
教学过程:
1.出示
2.揭示课题。
(1)提问:猜猜今天我们研究什么?
分数加减法
(2)出示课题:分数加减法
(3)提问:这些算式都一样吗? 你能给它们分类吗?哪一类比较好做?
(4)补充课题:同分母
1.提问:谁知道它们都等于怎么计算?这节课大家一起来研究:同分母分数加减法
2.出示课本第89页教学例题1。
(1)课件呈现情境图。(见课本第89页)
(2)提出问题。
师:爸爸和妈妈共吃了这张饼的几分之几?
(3)四人小组讨论,学生自主探索用什么方法可以证明?
a.你是怎么想的?
b.计算的结果是多少?
(4)汇报探索结果。
a.求两个数的和是多少,应该用加法。
一共有几个这样的分数单位?
c.课件显示
同分母分数加减法教学设计(
d.对于这样的计算结果,你有什么需要提醒其他同学的?
(5)归纳同分母分数加减法计算方法。
板书:分子相加减,分母不变
3.出示课本第90页教学例题2,课件呈现情境图。
师:爸爸和妈妈共吃了这张饼的几分之几?
(1)怎样列式
(3)独立完成计算过程
(4)对于它们的计算结果,要注意什么?
4.你能用自己的话来总结同分母分数加减法的计算方法吗?
补充板书:同分母分数相加减,分母不变,分子相加减
5.自己随意找两个分母相同的分数,组成一道加法算式或者减法算式,先计算再说说你的计算过程和想法。
1.下面的计算对吗?请把错的改正过来。
同分母分数加减法教学设计(
反馈方式:让学生小组内交流意见,对有疑问的提出来,集体分析。
2.神机妙算 对又巧。
同分母分数加减法教学设计(
3.解决问题我能行。
小丽计划一天练习写30个毛笔字,实际上午完成了计
划的十五分之七,下午完成了计划的十五分之十一,你能提出什么数学问题?并解答出来。
反馈方式:学生分组作完后,指代表发言,其他小组补充。
4.提高练习
同分母分数加减法教学设计(