当前位置:网站首页 >> 作文 >> 初中数学教案(优质15篇)

初中数学教案(优质15篇)

格式:DOC 上传日期:2023-09-23 18:07:03
初中数学教案(优质15篇)
时间:2023-09-23 18:07:03     小编:雅蕊

作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

初中数学教案篇一

1.使学生正确理解的意义,掌握的三要素;

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

难点:正确理解有理数与上点的对应关系.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例 变式练习

例1 画一个,并在上画出表示下列各数的点:

例2 指出上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中数学教案篇二

今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察分析推导计算

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

1课时

投影仪,自制胶片。

(一)创设情景,复习引入

板书:公式

师:小学里学过哪些面积公式?

板书:s=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积s。

2.题中“m”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性.

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

2.本题实际上是由圆的面积公式推导出环形面积公式.

3.进一步强调解题的规范性

测试反馈,巩固练习

(出示投影4)

1.计算底,高的三角形面积

3.已知圆的半径,,求圆的周长c和面积s

4.从a地到b地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求a地到b地所用的时间公式。

(2)若千米/时,千米/时,求从a地到b地所用的时间。

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

(一)填空

1.圆的半径为r,它的面积________,周长_____________

(一)必做题课本第xx页x、x、x第xx页x组x

(二)选做题课本第xx页xx组x

初中数学教案篇三

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

利用数形结合的方法验证公式

动手操作,合作探究课型新授课教具投影仪

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

第95页第3题

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案篇四

游戏-你选我砸共过关:8个金蛋中任选其中一个金蛋,如果出现金花,大家鼓掌pass,否则你必须回答其中的问题(你可以自己作答,也可以求助本组同学).

(1)列代数式:a与b的差的倒数

(2)说出代数式:(a+b)(a-b)的意义

(3)已知甲数比乙数的2倍少1.若设乙数为x,用关于x的代数式表示甲数.变式:若设甲数为x,用关于x的代数式表示乙数.

(4)纪念馆外一五彩花圃的形状如图,则花圃的面积为_______.

【生】:观察,类比,在判别的基础上发表自己对概念的理解,进行交流.

【生】:举手发言,解决问题.

【师】:引导学生注意每题的关键词,指导学生正确书写. 并进行及时评价.

【生】:构造代数式,交流代数式的意义,并用生活经验对所构造代数式进行解释.

【师】:引导学生把意义表达清楚,多作鼓励,进行多元评价.

【生】:自主探索,小组合作,代表发言,辩论交流.

【师】:及时评价。

【生】:选择金蛋号,回答里面的问题,其它同学思考,提供帮助

【师】:代为砸蛋

用代数式表示常用的数量关系是方程、不等式、函数等各种数学知识的基础,是本节课的重点,这里花较多的时间让学生进行训练,关键是让学生学扎实,突出数学课程的基础性和普及性,使人人获得必需的数学。

通过"根据语言表述的数量关系列代数式"和"把代数式表示的数量关系用语言表述"两方面进行对比、观察、归纳,强化了代数式的符号性,让学生获得必需的数学经验.同时,开放性问题的设计也为不同的人在数学上得到不同的发展创造了条件,体现了数学课程的发展性。 让学生结合生活实际,赋予代数式实际意义,使学生进一步意识到代数式的概念是为解决实际问题的需要而产生的.

主题1:突出代数式的普遍意义,渗透集合思想。

主题2:渗透数学人文和爱国情怀,让学生体会到其实数学发现就在我们身边,体验数学探究成功的喜悦。

主题3:突出数学活动的趣味性,使学生意识到玩也可以玩出数学来,渗透数学意识。

小组合作交流,更能发挥学生解决难题的主动性,使每个学生在探讨交流中都有收获.

激发兴趣,活跃氛围,巩固知识,学中玩,玩中学.

返程途中解决难题返程路上解疑问

【师】:指导学生分析题目。

【生】:解决问题.聆听别人的思维,形成自己的经验。

首尾呼应,整个旅程有始有终.进一步突出学习代数式的目的:解决实际问题.

你说我说清点收获 你说我讲共交流

1、代数式的概念

2、列代数式的要求

3、代数式的应用

请你把自己的感受和体会写进今天的数学日记中去.

【生】:交流感受,体会收获 【师】:根据学生的交流作适当归纳,并对学生自主探索、合作交流等学习过程作多元评价。

学生谈感受,教师作补充,培养学生的数学语言表达能力和自我整理的学习习惯.

初中数学教案篇五

生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

底面:棱柱有上、下两个底面,形状相同。

侧面:棱柱的侧面都是平行四边形。

立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

圆柱:上、下两个面都是圆形,侧面展开图是长方形。

圆锥:底面是圆形,侧面展开图是扇形。

截面:用一个平面去截一个几何体,截出的面。

球:用一个平面去截,截面图形是圆形。

正方体的截面:可以是正方形、长方形、梯形、三角形。

圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

初中数学教案篇六

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

初中数学教案篇七

创设情境导入新课

引导学生欣赏鲁迅纪念馆的照片,简单介绍鲁迅其人其事,进行爱国主义教育和乡土文化教育,激发学生的自豪感,并请学生做导游,点出这节课的主线:边参观鲁迅纪念馆边学习身边的数学.

沿参观旅程依此遇到下列问题:

3、在参观时了解到了纪念馆的一些情况:

初中数学教案篇八

1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、过程与方法:通过观察,归纳一元一次方程的概念。

3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

归纳一元次方程的概念

感受方程作为刻画现实世界有效模型的意义.

我能猜出你们的年龄,相信吗?

只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

问:你的年龄乘以2加3等于多少?

学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

学生讨论并回答

1、方程的教学(投影演示)

小彬和小明也在进行猜年龄游戏,我们来看一看。

找出这道题中的等量关系,列出方程.

大家观察,这两个式子有什么特点。

讨论并回答:什么是方程?方程有哪些特点?

2、判断下列式子是不是方程?

(1)x+2=3(是)(2)x+3y=6(是)

(3)3m-6(不是)(4)1+2=3(不是)

(5)x+35(不是)(6)y-12=5(是)

1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

情景二:第五次全国人口普查统计数据(20__年3月28日新华社公布)

下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

2x–5=21

40+15x=100

x(1+153.94﹪)=3611

2[x+(x+12)]=200

2[y+(y–12)]=200

在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

1、投影趣味习题,2、做一做

下面有两道题,请选做一题。

(1)、请根据方程2x+3=21自己设计一道有实际背景的应用题。

(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

1、这节课你学到了什么?

2、这节课给你印象最深的是什么?

分组布置

初中数学教案篇九

引导学生观察上面所列的算式:

它们与我们以前学过的算式有什么区别?点出课题(板书课题)

概念:像 这样含有字母的数学表达式称为代数式

先判别下列哪些是代数式?再说说你对代数式构成的看法. 【师】:引导学生观察算式,并与以前学过的算式相比较,得出概念.

在学生交流的基础上点明代数式的构成。

让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识,获得对概念的理解,发展数学能力。改变学生的学习方式,变"学会"为"会学"。

师生互动探索新知

    动手计算再探新知

    欢乐游戏巩固新知

对代数式构成的理解:

(1)一个代数式由数、表示数的字母和运算符号组成. 这里的运算指加、减、乘、除、乘方和开方6种运算.

(2)为了今后研究和表述方便,规定单独一个数或者字母也称代数式.

初中数学教案篇十

一、指导思想:

按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

二、教学内容

本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。

三、教学目标

知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教学措拖

1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。

3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。

初中数学教案篇十一

教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

二、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案篇十二

1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3、体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动) 设计理念

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学教案篇十三

一、教学目标:

(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。2.学生理解、巩固一元一次不等式的解法.3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。4.学生将文字表达转化为数学语言,从而解决实际问题。5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的解法。2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经

解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

初中数学教案篇十四

一、教学目标:

1.知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2.能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3.情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6x2,5,cd,-1,2x2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

初中数学教案篇十五

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的.概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服