当前位置:网站首页 >> 作文 >> 2023年新高一数学必修一第二章教案(通用9篇)

2023年新高一数学必修一第二章教案(通用9篇)

格式:DOC 上传日期:2023-09-19 02:09:13
2023年新高一数学必修一第二章教案(通用9篇)
时间:2023-09-19 02:09:13     小编:BW笔侠

作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。

新高一数学必修一第二章教案篇一

1.了解内力作用的能量来源和表现形式,理解内力作用对地表形态的影响。

3.了解外力作用的能量来源和表现形式,理解外力作用对地表形态的影响以及内、外力作用的相互关系,理解它们是如何推动地表形态的演化的。

4.了解岩浆岩、沉积岩、变质岩与岩浆之间的相互转化过程,掌握各类岩石形成的地质作用。

二、能力目标

1.能够阅读各种地貌示意图,判断地貌类型,并分析其成因。

2.学会利用多幅景观图和示意图来比较说明不同陆地环境的地域差异及形成原因;

三、德育目标

1.通过分析各种地貌的成因,激发探究地理问题的兴趣和动机,养成求真、求实的科学态度。

2.树立事物之间是普遍联系的辩证唯物主义观点。

教学重难点

【教学重点】 1.风化、侵蚀、搬运、沉积作用所形成的不同的地表形态。

2.外力作用各表现形式相互之间的关系。

3.地质构造及其与地貌的对应关系;外力作用形成的地貌类型。

【教学难点】 1.外力作用各表现形式所形成的不同的地表形态。

2.内力、外力作用的关系。

3.培养学生树立正确的人地关系的观点。

教学过程

【导入】营造地表形态的力量

【学生讨论回答】略。

【讲授】内力作用

【提问】哪位同学能够例举营造地表形态的力量改变地表面貌的实例? (学生讨论、回答问题。)

【指导读书】请大家阅读教材p74第一段和案例1

,思考: 1.内力作用的能量来源是什么?

2.内力作用的表现形式有哪些?

3.各种内力作用的速度是否均匀?试举例说明。

【学生回答】

【放映幻灯片】

【教师总结】同学们回答的很好。由于变质作用一般发生在地壳深处,不能直接塑造地表形态,岩浆也只有喷出地表时才可以直接影响地表形态。所以,在内力作用中,地壳运动是塑造地表形态的主要方式。按照地壳运动的方向和性质,可以将其分为水平运动和垂直运动两种。

4、分类(根据运动方向和性质):水平运动和垂直运动

【材料】根据测量,亚洲和非洲之间的红海在不断扩张,而欧洲和非洲之间的地中海却在不断缩小。

【学生讨论回答】略。

【教师总结】水平运动是指组成地壳的岩层沿平行于地球表面的方向运动,它使岩层发生水平位移和弯曲变形,相对方向的水平运动常常造成巨大的褶皱山系,相反方向的水平运动常形成裂谷或海洋。大量资料证明,地壳运动的主要表现是其各个部分不断发生着水平运动。

【活动】内力作用举例

(2)设想一下升降运动对地表形态的影响?

【教师总结】升降运动是指组成地壳的岩层作垂直于地球表面方向的运动,即上升或下降的运动。它使岩层表现为隆起或凹陷,从而引起地势的高低起伏和海陆变迁。

【讲授】水平运动和垂直运动的关系

【放映幻灯片】学生思考:渤海与台湾海峡两案例

5、水平运动和垂直运动的关系 【教师讲解】在地壳运动中,这两个方向的运动是同时存在的,而且相互作用、相互影响,运动结果也往往相互渗透、叠加在一起。当然,在不同的时期和不同的区域,这两个方向的运动是有主次之分的。但是,就全球规模的运动而言,地壳的运动以水平运动为主,以垂直运动为辅。

【导入】外力作用

前面我们学习了内力作用,它在地表形成大陆与洋底、山脉与盆地等,奠定了地表形态的基本格局,总的趋势是使地表变得高低不平,就好像是一个雕塑作品的“粗毛坯”,要完成这座雕塑还需要用刻刀精心雕琢,下面我们就来学习大自然的这把细致的刻刀——外力作用。

【讲授】外力作用

【提问】阅读教材p76第一段回答:

1.外力作用的概念

2.外力作用的能量来源是什么?

3.外力作用的表现形式有哪些?

【学生回答】 1.地球表面的风、流水、冰川、生物等也可以引起地表形态的变化,被称为外力作用。

2.外力作用的能量来自地球外部,主要是太阳辐射能。

3.它对地表形态的塑造主要有风化、侵蚀、搬运和堆积四种方式。

【放映幻灯片】1、概念、能量来源

2、表现形式

【导入】岩石圈的物质循环

地表形态的塑造过程也是岩石圈物质的循环过程,它们存在的基础是岩石圈三大类岩石——岩浆岩、变质岩、沉积岩的相互转化。

【讲授】岩石圈的物质循环

【指导读书】请大家阅读教材p78第二段和图,

思考:

1.岩浆岩、变质岩、沉积岩的各自形成原因?

2.各类岩石之间的相互转化关系(各物质循环过程发生的条件?)?

【学生回答】

1.岩浆岩是在地球内部压力作用下,岩浆沿着岩石圈的薄弱地带侵入岩石圈上部或喷出地表,冷却凝固形成。 沉积岩是裸露地表的岩浆岩在风吹、雨打、日晒以及生物作用下,逐渐成为砾石、沙子和泥土。这些碎屑物质被风、流水等搬运后沉积下来,经过固结成岩作用形成。 变质岩是各种已经生成的岩石,在一定的温度和压力下发生变质作用形成。

2.各类岩石在岩石圈深处或岩石圈以下发生重熔再生作用,又成为新的岩浆。岩浆在一定的条件下再次侵入或喷出地表,形成新的岩浆岩,并与其他岩石一起再次接受外力的风化、侵蚀、搬运和堆积。

【教师总结归纳】同学们回答的很好,我们可以用下图说明地壳物质循环过程的特点:(幻灯片展示)

课后小结

1.地壳物质循环过程

结合上图教师进一步指导讲解地壳物质循环过程

2.地壳物质循环的特点

(1)地壳物质循环过程:岩浆-各种岩石-新岩浆

(2)地壳物质与地球内部和地球外部也不断进行物质交换和能量转化,即内、外力作用

(3)由大气、水、生物参与地壳物质循环并起重要作用而形成的地表物质循环,对地球表面的自然地理环境具有重大而深刻的影响。

新高一数学必修一第二章教案篇二

高一数学学习技巧

1.要读好课本

有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。

2.要记好笔记

首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

3.要做好作业

在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。

4.要写好总结

一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。

通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

2怎样把高中数学学好

1.课前预习教材。课前可以把教材上第二天老师要讲的内容看一下,看看哪些能看懂,哪些不懂。这样老师在讲课的时候我们就能带着问题去听,把自己没看懂的问题听懂。

2.上课专心听讲。这是很重要的,很多同学以为自己什么都弄懂了,就自己做自己的题目。其实即使是自己看懂了的,也可以看看老师也没有另外的理解方法,老师的方法是不是比自己好。听老师有时候讲比自己看更好。

小编推荐:高一数学怎么学才能学好

3.课后认真复习。刚学的知识,还没完全被消化吸收成为自己的知识,如果不及时复习,就很容易忘记。所以,课后一定要抽出一些时间,及时对所学进行巩固。

4.通过习题巩固。数学是理科,需要通过一定量的习题来巩固,量变积累到了一定量才能质变嘛。这个并非要各位打题海战术,只要求各位做到熟练为止。

5.错题反复研究。自己准备一个错题本,把考试时候做错的题目记录下来,写上做错的原因,反复研究,避免再次出错。

新高一数学必修一第二章教案篇三

一、自主学习

1.阅读课本练习止。

2.回答问题:

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3.完成练习。

4.小结。

二、方法指导

1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。

一、提问题

1.对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明。

二、变题目

1.试求下列函数的反函数:

(1);(2);(3);(4)。

2.求下列函数的定义域:

(1);(2);(3)。

3.已知则=;的定义域为。

1.对数函数的有关概念。

(1)把函数叫做对数函数,叫做对数函数的底数。

(2)以10为底数的对数函数为常用对数函数。

(3)以无理数为底数的对数函数为自然对数函数。

2.反函数的概念。

在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。

3.与对数函数有关的定义域的求法:

4.举例说明如何求反函数。

一、课外作业:习题3-5a组1,2,3,b组1,

二、课外思考:

1.求定义域:

2.求使函数的函数值恒为负值的的取值范围。

新高一数学必修一第二章教案篇四

2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的爱好.

教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.

实物投影仪,多媒体软件,电脑.

研探式.

一.复习提问

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用

(1)已知等差数列中,首项,公差,则-397是该数列的第x项.

(2)已知等差数列中,首项,则公差

(3)已知等差数列中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用

(1)已知等差数列中,求的值.

(2)已知等差数列中,求.

若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

如:已知等差数列中,…

由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….

类似的还有

(4)已知等差数列中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判定?引出

3.研究等差数列的单调性

4.研究项的符号

这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第x项起以后每项均为负数.

三.小结

1.用方程思想熟悉等差数列通项公式;

2.用函数思想解决等差数列问题.

四.板书设计

等差数列通项公式1.方程思想的运用

2.基本量方法的使用

3.研究等差数列的单调性

4.研究项的符号

新高一数学必修一第二章教案篇五

教学准备

教学目标

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点

熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程

复习

两角差的余弦公式

用- b代替b看看有什么结果?

新高一数学必修一第二章教案篇六

(1)理解直线与圆的位置关系的几何性质;

(2)利用平面直角坐标系解决直线与圆的位置关系;

(3)会用“数形结合”的数学思想解决问题、

用坐标法解决几何问题的步骤:

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论、

重点与难点:直线与圆的方程的应用、

问 题设计意图师生活动

生:回顾,说出自己的看法、

2、解决直线与圆的位置关系,你将采用什么方法?

生:回顾、思考、讨论、交流,得到解决问题的方法、

问 题设计意图师生活动

3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题

生:自 学例4,并完成练习题1、2、

生:建立适当的直角坐标系, 探求解决问题的方法、

8、小结:

(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、

生:阅读教科书的例3,并完成第

问 题设计意图师生活动

题的需要准备什么工作?

(2)如何建立直角坐标系,才能易于解决平面几何问题?

(3)你认为学好“坐标法”解决问题的关键是什么?

新高一数学必修一第二章教案篇七

教学准备

教学目标

1、理解平面向量的坐标的概念;

2、掌握平面向量的坐标运算;

3、会根据向量的坐标,判断向量是否共线.

教学重难点

教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性.

教学过程

平面向量基本定理:

什么叫平面的一组基底?

平面的基底有多少组?

引入:

1.平面内建立了直角坐标系,点a可以用什么来

表示?

2.平面向量是否也有类似的表示呢?

新高一数学必修一第二章教案篇八

一、自主学习

1. 阅读课本 练习止.

2. 回答问题

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3. 完成 练习

4. 小结.

二、方法指导

1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

一、提问题

1. 对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明.

二、变题目

1. 试求下列函数的反函数:

(1) ; (2) ;

(3) ; (4) .

2. 求下列函数的定义域:

(1) ; (2) ; (3) .

3. 已知 则 = ; 的定义域为 .

1.对数函数的'有关概念

(1)把函数 叫做对数函数, 叫做对数函数的底数;

(2)以10为底数的对数函数 为常用对数函数;

(3)以无理数 为底数的对数函数 为自然对数函数.

2. 反函数的概念

在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.

3. 与对数函数有关的定义域的求法:

4. 举例说明如何求反函数.

一、课外作业: 习题3-5 a组 1,2,3, b组1,

二、课外思考:

1. 求定义域: .

2. 求使函数 的函数值恒为负值的 的取值范围.

新高一数学必修一第二章教案篇九

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本p8,习题1.1a组第1题。

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本p7练习1、2(1)(2)

课本p8习题1.1第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本p8练习题1.1b组第1题

课外练习课本p8习题1.1b组第2题

1.2.1空间几何体的三视图(1课时)

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服