范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
公因数和最大公因数教学反思不足之处篇一
1、出差两天,今日回来,与孩子们继续畅游《公倍数和公因数》单元。
思维一旦被激发,就有点一发不可收拾。
从第一课时开始,孩子们与我是完全浸润在了公倍数与公因数的欢乐中。我的态度也从一开始对教材安排的质疑,到现在极力拥护教材的安排。
只有放手给孩子们一个构建的机会,孩子们才能在构建过程中频频发起智慧的邀请。
在学习公倍数的时候,课上巧遇“思维定势”,孩子们以为两个数的公倍数就是它们的乘积;但是在解决书本上的6和9的公倍数是多少时,猛然发现,这个方法不能次次实施。孩子们提出了一系列猜想。其中小彧发现,如果将错就错,把6和9相乘,也可以,但是要除以它们的最大公因数。并且,小彧通过举例,把这个发现从特殊上升到了一般。
因为当时还未学习公因数,我就躲避了问题的内里。
呵呵,好家伙,知道了是什么,自觉追问了为什么?
明天我们要对本章节的内容做个整体梳理,我准备结合短除法,让孩子们意识到小何追问思想的可贵,以及这个方法可行之处究竟是什么。
2、孩子们很爱思考,从第一课时的下课时间开始,就发现两个数若有倍数关系,它们的最小公倍数很奇妙,就是较大的数。
第二课时,我们通过教材上的习题,一起说了这个规律,即诉说了看到的表面现象。
孩子们还不甘心,提出了问题,为什么两个数是倍数关系,最小公倍数就是大的那个数呢?
一时安静后,好几个孩子举高手,并说清了原因:大数本身是小数的倍数,大数又是自己最小的倍数,理所应当是两数的最小公倍数。
3、公倍数的种种猜想,在学习公因数的时候,思想方法得到了迁移。
要做找公倍数的上本子作业了,我板书给孩子们看书写格式,他们拉着脸。
我说,我小时候,就是写这么多字的。不过,我可以介绍你们写一种简单的,用“()”包住两个数,中间用逗号隔开,这样就能代替写这么多字。孩子们一看,多方便呀!居然都“啪啪啪”鼓起掌来,哈!
我满怀惬意的说,你们的掌声与微笑中包含着对数学简洁美的追求啊!
孩子们爽歪歪了。
不过事后,一个资深老师告诉我,这个环节,如果让孩子们创造一下,如何追求简洁。也许,这样对于孩子们的思维发展更有效。一想,我也同意这般。
公因数和最大公因数教学反思不足之处篇二
本节课是在学生已经理解和掌握因数、倍数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。我根据教材的编写特点准确地制定了教学目标,即理解公因数及最大公因数的意义。知道任意两个数都有公因数;能够采用枚举法找到两个数的最大公因数。通过动手、观察、思考等教学活动,从拼摆过程中发现公因数,再通过进一步探究明确公因数及最大公因数的含义。
以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。而本节课注意引导学生通过找出已知面积的长方形的长和宽的长度,确定怎样使这样的两个长方形拼成一个新的长方形。其次,引导学生观察这样的几组数据与长方形面积之间的关系——右面的这些数据都是左面这些数据的因数。三是揭示出公因数和最大公因数的含义——指出用红笔标出的这些数据是左面这两个数的公因数,找到这里面最大的一个公因数,完成由形象到抽象的过程,把感性认识提升为理性认识。
概念的内涵是指这个概念的所反映的一切对象的共同的本质属性。公因数是几个数公有的因数,可见“几个数公有的”是公因数的本质属性。因此在因数的基础上学习公因数,关键在于突出“公有”的含义。本节课突出概念的内涵是“既是……也是……”即“公有”。教学中,我首先让学生在练习本上找出12和16的因数,然后借助直观的集合图揭示出“既是12的因数,又是16的因数”这句话的含义,帮助学生进一步理解公因数和最大公因数的意义。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。
概念的外延是指这个概念包含的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,这对加深概念的认识很有好处。本节课我注意利用反例,来凸现公因数的含义。在用集合图法来表示12和16的公因数的时候,找到填写错误的学生的例子,提示学生注意:并集里填写的是两个数的公因数,而没有交在一起的集合图中,只填写这两个数的都有的因数,从而进一步明确公因数的概念。
教师的提问有时指向性不是很强,学生不能很快地明白老师的意图,影响了学生的思考,须进一步提高。在教学“两个长和宽都是整厘米数的长方形的面积分别是2平方厘米和3平方厘米,这两个长方形的长、宽分别是多少?”时,学生有些困难,我应该让学生动手在本上画一画,帮助学生找到,降低难度,这点考虑不周,没有切实联系实际。
自己要学的东西还有很多,应注意提高自身修养。多阅读、多听课,努力提高自己的教学水平,更好地为学生服务。
公因数和最大公因数教学反思不足之处篇三
例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次:第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
反思:突出概念的内涵、外延,让学生准确理解概念。
我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括“1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。
由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。
运用数学概念,让学生探索找两个数的最大公因数的方法。
例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。
充分利用教育资源,自制课件,协助教学。
限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。
本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。
公因数和最大公因数教学反思不足之处篇四
“因数和倍数”的知识,向来是小学数学教学的难点。“最大公因数”这节课是在学生掌握了因数、倍数、找因数的基础上进行的,通过这节课的学习,学生会说出两个数的公因数和最大公因数,会求两个数的最大公因数,并为后面学习分数的约分打好基础。反思这节课我认为有以下几点:
1、通过找8和12的因数,引出公因数的概念。
教师引导学生先写出8和12的因数,再观察发现8和12有公有的因数,自然引出了公因数的概念。然后通过集合圈的形式,直观呈现什么是公因数,什么又是最大公因数。促进学生建立”公因数和最大公因数”的概念。
2、通过找18和27的最大公因数,掌握找最大公因数的方法。
掌握了公因数的概念之后,教师放手给予学生足够的时间,让学生自主探究找最大公因数的方法。交流反馈时,考虑到中下水平的学生,教师只汇报了书本中的三种基本方法,并没有提到短除法。
本节课,教师从认识公因数——理解最大公因数——探究找最大公因数的方法——相应的练习巩固这几个环节入手,每个环节都是层层递进,环环相扣,促进了学生对概念的理解。
《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,各个环节的学习流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥。
公因数和最大公因数教学反思不足之处篇五
这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。
1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。在教学例3时,我分四步组织学生的活动。
第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。引导学生具体感知公因数的含义。
第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。
第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。
第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。通过正、反两方面的比较,优化概念的形成。
2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。
这时,我适时引导学生建立概念结构:因数——公因数——最大公因数,并且辨析这些概念的联系与区别。此外,考虑到学生也已经初步认识了用集合图表示两个相交的集合圈,所以我让学生根据对有关概念的理解,独立把8和12的因数分别填在集合图中的合适部分,然后再看图说说各自的想法,说说每一个区域内的数分别表示什么,把静态的集合图转化成动态的探索对象,让学生加深对集合图的理解,也使集合思想的渗透落到实处。
3、练习的重点是让学生通过操作和填空,进一步理解求公因数和最大公因数的方法。让学生在解决问题的过程中提炼解题策略,优化概念应用的过程。
公因数和最大公因数教学反思不足之处篇六
1、在复习的过程中,引导学生复习用多种方法找每个数的因数,丰富学生解决问题的多样性。
2、通过复习、发现、总结,什么是公因数及最大公因数,在研究的过程中交流、总结自己的发现。
3、通过填写集合图,使学生了解集合的思想,并进一步体会公因数和最大公因数的关系。
4、通过练一练活动,引导学生独立发现并总结出:(1)倍数关系的两个数,最大的数就是这两个数的最大公因数;(2)公因数只有“1”的两个数(互质数),它们的最大公因数就是这两个数的乘积。
5、在进一步的练习中,在学生独立解决问题的基础上,让学生说出自己的思考方法,进行集体交流,相互学习,丰富学生解决问题的策略。
1、教学过程中,缺少对学生学习情况的评价 特别是鼓励性的评价。
2、教学思想“由一般到抽象”的过程体现的不够明了。
3、 对于教材的拓展不够深入。
1、加强和提高对学生评价的意识,重视评价的功能。
2、在备课时,要清楚把握教学内容的梯度,使教学思想融入教学过程之中。
3、加强对教材的拓展,切实做到以教材为载体,以教学内容为导向,发展学生的数学能力。
公因数和最大公因数教学反思不足之处篇七
公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。
在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的过程。应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。
教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。
1.增强师生和生生之间的互动
在教学过程中各个环节的衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。今后的教学中,在这一点上要都多下功夫。本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。
2.方法多样化和方法优化
在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。同时还要引导学生进行方法的比较和优化。
公因数和最大公因数教学反思不足之处篇八
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”
学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
通过学生的猜测,我把学生的提出的问题进行了整理:
(1) 什么是公因数与最大公因数?
(2) 怎样找公因数与最大公因数?
(3) 为什么是最大公因数而不是最小公因数?
(4) 这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的`应有之意吧。
公因数和最大公因数教学反思不足之处篇九
一、适时地渗透集合思想。在教学例1时,解题过程不仅呈现了用列举法解决问题。还引导学生用集合图来表示答案,从而渗透了集合思想,为后续的学习奠定感性认识。
二、关注学生探究活动的空间,将自主探究活动贯彻始终。在教学中,教师为学生创设了三次自主探究的机会。即一在情境中通过动手操作认识公因数,二用集合图表示因数之间的关系,三用自己的方法求出两个数的最大公因数。在这几次的探究活动中,教师始终积极地调动学生的情感,启发他们主动参与,引导学生感知、理解,从而在脑中形成系统的知识体系。
本节课是教学运用最大公因数的有关知识来解决生活中的实际问题。通过创设生活情境,让学生借助学具摆一摆,算一算或在纸上用彩笔画一画的方法把出现的几种情况记录下来,既提高学生的学习积极性,也让学生体会到新知与生活的密切联系。同时,通过引导学生自主探索、组织交流并验证结论,让学生体会获得成功的喜悦,更加积极地探索新知,掌握所学知识。
本节课的不足之处在于练习部分时间过于仓促,没有足够的时间让学生交流与理解,部分学困生掌握不够到位。这需要教师在今后教堂中合理安排时间,避免时间过于紧迫。
公因数和最大公因数教学反思不足之处篇十
学生的学习过程是一种特殊的认知过程,必须在积极主动的情况下在自己的逐步思考和探究中达到解决的目的。
1、小组讨论合作学习研究多了,独立思考就有所忽视。从数学学习的本质来说,独立思考是主流,合作交流应在独立思考的基础上进行。只有在独立思考的前提下,才有交流的可能。因此,在本课设计时,求两数的最大公约数。先让学生课前独立探究方法,在学生有充分独立思考的基础上再交流评价。才真正实现每个学生潜质的开发和学生之间真正的差异互补。
2、独特的见解总是在主体迷恋执着,充分自由的状态中萌芽出来的,在教学中应放下架子,蹲下身子来倾听学生,相信每个学生都会有精彩的表现。正如陶行知所说的:“学生能做许多你不能做的事,也能做许多你认为他不能做的事。”不要小看了孩子,要对每位孩子充满信心,从而使课堂频频发出精彩的光芒。如本课时在开放题的解答过程中,学生能在一些简单的尝试开始,从中逐步发现其中的规律,以至于应用获得的规律来实现问题解决的最优化,不得不惊奇孩子能力的巨大。
3、当数学问题情境作用于思考者时就有可能展开数学思维活动,可以说,问题的设计和问题的情境的创设是促进数学思考的客观性因素。让学生在问题情境中层层推出数学思考“还有没有其他的方法”“他的方法你认为怎样”“你是怎么想的”鼓励表扬敢于思索的同学,错误的回答也是对正确知识的一种辨析过程,新知识对每个每一次学习的学生都是一个发现、创造的大空间。
两个数的最大公约数的教学反思有探究就有发现,有发现就是
学习的成功。成功所带来的喜悦总是进一步学习的最大动力,自主探究的课堂,为个性不同的学生的发展留下了必要的空间,让他们都有机会表达自己的思想,以自己独特的方式去学习数学,发展知识,各自体验到学习数学的成功感。