在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
因数和倍数教学反思不足之处篇一
课后作业 :课后自已或与同学合作制作一个含有因数和倍数知识的转盘。
教后反思:
40分钟的时间一闪而过,轻松愉悦的课堂气氛,让学生的学习情绪空前高涨,学生的学习热情,学习过程中数学思维的提升,都在这短短的时间内让我感觉无尽的惊喜。
课堂导入,亲切,有效,让学生先在脑海中留下“关系”这种印象,学生通过自己阅读明白谁是谁的因数,谁是谁的倍数,然后通过试一试、练习、特别是(8是倍数,4是因数。…… ( ))的辨析,让学生明白:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。
因数和倍数不能单独存在。
通过寻找一个数的因数,和一个数的倍数,让学生通过多个实例找到规律。
在教学中由于过分依赖课件,致使有的环节没有深入,没有给学生时间进行
因数和倍数教学反思不足之处篇二
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。这样的变化原因何在,我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。
(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式直接引出因数和倍数的概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
因数和倍数教学反思不足之处篇三
新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识因数、倍数时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去整除的数学化定义,降低学生的认知难度,虽然课本没出现整除一词,但本质上仍是以整除为基础。我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我从以下三个方面谈一点教学体会。
良好的开头是成功的一半。我采用拼拼摆摆作为谈话进入正题,不仅可以调动学生的学习兴趣,对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。我设计了尝试练习、引出冲突、讨论探究这么一个学习环节。学生带着又对又好的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕好展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,学生发现3的倍数写不完时都面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助多媒体出示乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了因数与倍数的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在总结倍数的特征,这一环节里缩短出示时间,直接以3个小问题出示,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
因数和倍数教学反思不足之处篇四
《倍数和因数》,由于之前没上过这册内容,在看完教材后就和同组的老师说,这个内容好像挺简单的。不过上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,而且在课堂中存在了很多在预设中没有想到的问题,下面对自己的课堂做一些反思:
1.在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎么摆的,有几种不同的摆法?通过让学生动手操作实践,体现了以学生为本,而且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不同的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应该是很简单的两句话,学生应该会说,可是当请学生来自己选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。
针对学生出现的问题,我觉得可能是自己在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应该在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。
针对最后请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不知道该找什么。可以问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。
3。第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是一定困难的,而这个环节我处理的也不到位,学生对找一个数因数的方法掌握的不够好。
我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否可以先从12下手,因为前面一开始已经找过12的因数了,如果这里能用12做一下铺垫,可能找36的因数时就会好一些。
在学生自主探索完36的因数有哪些后,交流不同学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎么找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数。其实这里除了用除法来找之外,还可以用乘的方法来找,而乘的方法似乎对于学生来说在找得时候还更简单一点。更重要的是我觉得一对对的找对于找全一个数的因数是一个很重要的方法,而我却把这个方法忽略了,所以学生对于找一个数的因数的方法不够深刻,在练习中也发现做的不理想。
4。第四个环节是巩固练习,我设计了2个小游戏。一个是看谁反应快,符合要求的请学生起立,这个游戏学生参与面广,学生也感兴趣,还从中发现了找谁的学号是几的因数,1每次都会起立,就更好的巩固了一个数的因数最小是1。但是也有个别学生反应比较慢。第二个小游戏是猜一猜老师的手机号码是多少?但是由于前面时间用的比较多,所以没来得及做。
原本认为简单的课却一点都不简单,每个细小环节的把握都要求我去仔细的钻研教材,设计好每一步,这样才能上好一节课。
因数和倍数教学反思不足之处篇五
在学习了“因数和倍数”这一单元后,照例要过进行复习。课堂上,在引导学生复习了“谁是谁的倍数,谁是谁的因数”、“2、5、3的倍数的特征”、“奇数和偶数”、“素数和合数”这些概念后,我要求学生先写出20以内的素数(2、3、5、7、11、13、17、19),再写出20以内的合数(4、6、8、9、10、12、14、15、16、18、20)。这时,我问学生:“谁能利用这些数来提一个问题,考考大家?”学生一时哑然,不知从何下手。我微微一笑:“老师来带个头,请问:最小的素数是多少?”“哦!”学生立刻醒悟,争先恐后地举手发问:
生1:最小的合数是多少?
生2:20以内有几个素数?
生3:20以内有几个合数?
生4:哪个数既不是素数也不是合数?
生5:哪个数既是素数又是偶数?
生5:20以内有哪几个数既是合数又是奇数?
生6:“自然数不是素数就是合数”这句话对不对?
生7:“所有的偶数都是合数”,对不对?
生8:“所有的素数都是奇数”,对不对?
生9:自然数按它的因数的个数分成哪几类?
生10:“1是所有自然数的因数”这句话对吗?
学生有的提问,有的作答,情绪高涨,思维活跃,忙得不亦乐乎。
流水不腐,户枢不蠹”,如果要想让课堂成为“清澈的渠水”,就必须不断地为它注入“活水”,这个“活水”就是一个个精妙的`提问,而如果这些“活水”就来自学生自己的思考,那么这将是多么有生命力的课堂!
上述教学片断中,教师只是抛出了一个问题,但就像点着了焰火的引信一样,课堂立刻绽放出绚烂的火花!学生纷纷把自己积累的数学知识亮了出来,提出了一个个问题,既考了考别的同学,又训练了自己的思维和语言表达,又让大家应用概念的能力得到了增强,还活跃了课堂气氛,让一堂平淡无奇的复习课变得精彩纷呈。
由此,我认为要培养学生提问的能力,教师要先培养自己提问的能力,用精妙的、恰到好处的问题,激发学生的思维,唤起学生的思考,只有学生的思维被调动起来,才能提出有一定质量的问题,促进自己和同学的数学能力的提高。
因数和倍数教学反思不足之处篇六
“倍数和因数”与“倍数和约数”这两种说法只是新旧教材的说法不一样而已,其实都是表示同一类数。(即因数也是约数)
也许我的头脑还受旧版教材的影响,我认为说到“倍数与因数”必须要谈到整除,因为整除是研究“因数和倍数”的条件,学生在没有这条件学习整除,只要教师的教学方法稍有不慎,学生会很快误入小数也有因数;可是我在实际的教学过程中,也体会到了教材中不提整除的好处。而我的心里却又产生了一个新的疑问,s版教材到底在什么时候于什么数学环境下才提出“整除”这个概念呢会不会在六年级课改才出现呢我期待着。
1、在教学2和5的倍数时,是用同一种方法找出它们倍数的,学生很容易掌握,也很快就能把2和5的倍数说出,并能准确找出各自的倍数,此时,教师应把学生的思维转到同时是2和5的倍数怎样找之后引导学生归纳出同时是2和5的倍数的特征,所以,让学生的知识面进一步加大。
2、教学3的倍数的特征时,教师首先让学生用2和5的倍数的方法去找3的倍数的特征,让学生尝试这种方法是找不到3的倍数的特征,这时,教师应当引导学生对写出的3的倍数,要用另一种方法去归纳、总结3的倍数的特征,运用这一特点,教师能够有意识地写些数(有3的倍数,也有不是3的倍数,并且是较大的数)让学生进行确定,这样可使学生对3的倍数的特征进一步得到巩固;当学生熟练掌握3的倍数的特征时,教师话峰一转,你们能归纳出9的倍数的特征吗学生在教师这一激发下,他们的求知欲兴趣大增,然后教师启学生运用找3的倍数的方法,去找9的倍数的特征,学生会轻而易举地归纳、总结出9的倍数的特征。经过找9的倍数的特征,既巩固了学生学习3的倍数的特征,还使学生的知识面扩大,到达知识的巩固和迁移的目的。
3、当学生掌握了2.5和3的倍数的特征时,教师这时应引导学生进一步归纳、总结,把这三个特征综合,从而得出同时是2、3和5的倍数的特征。
经过这样的教学,让学生真正感受到“灵活”两字,并且能把知识面向纵横方向发展。
因数和倍数教学反思不足之处篇七
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的.同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。
这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
(1)彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“x是x的因数”时,两者都只能是整数。
(2)“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。
因数和倍数教学反思不足之处篇八
《因数和倍数》是一节数学概念课,通过这个乘法算式直接给出因数和倍数的概念。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。
数学课程标准“以人为本”的理念决定着数学教学目标的指向:适应并促进学生的发展。根据本节课知识的特点和学生的认知规律,我采用了角色转换、数形结合、合作学习等发展性教学手段进行教学,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。在课堂中,我主要围绕以下几方面来进行教学:
(1)捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。
因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,渗透相互依存的关系。通过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮助学生理解了因数倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。
(2)角色转换,让学生亲身体验数和数之间的联系。
因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。因而,我采用了“拟人化”的教学手段,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自己的号码,整节课学生都沉浸在自己的角色体验中,学生都把自己当成了一个数。通过对自己一个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。
(3)数形结合,让学生带着已有知识走进数学课堂。
“数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。开课教师引导学生进行空间想象。
(4)重组教材,根据学生的实际情况,多种形式探究找因数倍数的方法。
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。
(5)趣味活动,扩大学生思维的空间,培养学生发散思维的能力。
只有让学生亲身感受到数学知识内在的智取因素,数学学习的无穷魅力才能深深地打动学生。这节课的练习设计紧紧把握概念的内涵与外延,设计有效练习,拓展知识空间。譬如:让学生用所学知识介绍自己,通过数字卡片找自己的因数和倍数朋友等等。学生拿着自己的数字卡片上台找自己的朋友,让台下学生判断自己的学号是不是这个数的因数或倍数,如果台下学生的学号是这个数的因数或倍数就站到前面。由于答案不唯一,学生思考问题的空间很大,这样既培养了学生的发散思维能力,又使学生享受到了数学思维的快乐。但由于我缺乏时间观念,这部分时间太仓促,没有展开练习,学生没有尽兴,也没有达到充分地练习效果。
因数和倍数教学反思不足之处篇九
《因数和倍数》是人教版五年级下册第二章第一课时所学内容,这一内容与原来教材比有了很大的不同,旧教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识因数和倍数的,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。上完这节课觉得有以下几点做得较好:
我开门见山,直接入题,创设了有效的数学学习情境,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义,这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念,减缓难度,效果较好。
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、引导者、参与者,。整节课中,我始终为学生创造宽松的学习氛围,让学生自主探索,学习理解因数和倍数的意义,探索并掌握找一个数的因数和倍数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。
课前我精心设计练习题,力求不仅围绕教学重点,而且注意到练习的层次性,趣味性。譬如:让学生用所学知识介绍自己,通过数字卡片找自己的因数和倍数朋友等等。学生拿着自己的数字卡片上台找自己的朋友,让台下学生判断自己的学号是不是这个数的因数或倍数,如果台下学生的学号是这个数的因数或倍数就站到前面。由于答案不唯一,学生思考问题的空间很大,这样既培养了学生的发散思维能力,又使学生享受到了数学思维的快乐,感悟数学的魅力。
1、课上应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。
2、课堂用语还不够精炼,应该进一步规范课堂用语,做到不拖泥带水。
3、教者评价应及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来,避免单一化。
因数和倍数教学反思不足之处篇十
本节课的内容是在学生已经学习了一定的整数知识(包括整数的知识、整数的四则运算及其应用)的基础上,进一步认识整数的性质。本单元所涉及的因数和倍数都是初等数论的基础知识。
1.理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
2.厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
1.练习设计容量少了一些,导致课堂有剩余时间。
2. 对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
因数和倍数教学反思不足之处篇十一
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1.练习设计容量少了一些,导致课堂有剩余时间。
2.对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
因数和倍数教学反思不足之处篇十二
新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我从以下三个方面谈一点教学体会。
良好的开头是成功的一半。我采用“拼拼摆摆”作为谈话进入正题,不仅可以调动学生的学习兴趣,一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。我设计了尝试练——引出冲突——讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,学生发现3的倍数写不完时都面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助多媒体出示乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在总结倍数的特征,这一环节里缩短出示时间,直接以3个小问题出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。