当前位置:网站首页 >> 作文 >> 平行线的判定教案(大全8篇)

平行线的判定教案(大全8篇)

格式:DOC 上传日期:2024-03-20 21:25:56
平行线的判定教案(大全8篇)
时间:2024-03-20 21:25:56     小编:雨中梧

作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

平行线的判定教案篇一

《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的'判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。

1、教学目标和重难点

基于学生的学习情况,确定了本节课的教学目标和教学重难点。教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。

2、具体内容安排如下:

首先安排的是自主学习部分,以填空的形式。再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。

接着安排的是巩固提高练习。在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。

再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。

最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。

1、 导学案内容设计上,测评反馈较简单,起不到测评效果;

3、 小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;

4、 解决问题的方法总结上不到位;

5、 驾驭课堂能力差,学生学习热情不能很好地调动;

6、 教学语言不够简练,教学心理紧张。

一方面,在教学上认真钻研课本和新课标,抓教学内容的本质;多做一些练习,揣摩教学重难点,抓住出题方向,总结教学方法。另一方面,要立足于学生,站在学生立场上去备课去设计教学过程。同时,注重对学生进行循序渐进地练习,不要急于求成,有意识地培养学生有条理的思考和表述,训练学生的逻辑思维能力,另外,注意分析和解决问题方法的总结。最后,在自身素质上,多听课,多向其他教师请教,不断学习,提高专业素质和教学技能。还需养成会反思、勤反思的习惯,不断思考自己在教学过程中出现的问题和不足。

总之,通过这次公开课,自己感触颇多。一方面暴露出自己有好多不足,另一方面说明自己的成长空间还很大。最后这篇反思就以这句诗结尾吧:路漫漫其修远兮,吾将上下而求索。

平行线的判定教案篇二

1.了解推理、证明的格式,理解判定定理的证法.

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:积极参与、主动发现、发展思维.

三、重点·难点及解决办法

(一)重点

判定定理的推导和例题的解答.

(二)难点

使用符号语言进行推理.

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点.

2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片.

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课.

2.通过教师指导,学生探索新知,练习巩固,完成新授.

3.通过学生自己总结完成小结.

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

学生活动:学生口答第1、2题.

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

教师将第3题图形画在黑板上.

学生活动:学生口答理由,同角的补角相等.

师:要求学生写出符号推理过程,并板书.

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角.

师:它们有什么关系.

学生活动:互补.

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

平行线的判定教案篇三

1、熟练证明的基本步骤和书写格式;

2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

1、平行线的性质定理的证明.

2、证明的一般步骤.

1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.

2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.

通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.

证明的步骤和格式.

理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.

一、创设现实情境,引入新课

节课我们就来研究“如果两条直线平行”

二、讲授新课

在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:

同位角相等两直线平行,

议一议

利用这个公理,你能证明哪些熟悉的结论?

想一想

(2)你能根据所作的图形写出已知、求证吗?

(3)你能说说证明的思路吗?

1.如果一个角的两边与另一个角的两边分别平行,那么这两个角( )

a.相等b.互补c.相等或互补d.不能确定

2.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向和原来的方向相同,这两次拐的角度可能是( )

a.第一次向左拐30°,第二次向右拐30°

b.第一次向左拐50°,第二次向右拐130°

c.第一次向右拐30°,第二次向右拐130°

d.第一次向左拐50°,第二次向左拐130°

3.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段ab,ac,ae,ed,ec,db中,相互平行的线段有( )

a.4组b.3组c.2组d.1组

平行线的判定教案篇四

《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。

1、教学目标和重难点

基于学生的学习情况,确定了本节课的教学目标和教学重难点。教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。

2、具体内容安排如下:

首先安排的是自主学习部分,以填空的形式。再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。

接着安排的是巩固提高练习。在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。

再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。

最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。

1、 导学案内容设计上,测评反馈较简单,起不到测评效果;

3、 小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;

4、 解决问题的方法总结上不到位;

5、 驾驭课堂能力差,学生学习热情不能很好地调动;

6、 教学语言不够简练,教学心理紧张。

一方面,在教学上认真钻研课本和新课标,抓教学内容的本质;多做一些练习,揣摩教学重难点,抓住出题方向,总结教学方法。另一方面,要立足于学生,站在学生立场上去备课去设计教学过程。同时,注重对学生进行循序渐进地练习,不要急于求成,有意识地培养学生有条理的思考和表述,训练学生的逻辑思维能力,另外,注意分析和解决问题方法的总结。最后,在自身素质上,多听课,多向其他教师请教,不断学习,提高专业素质和教学技能。还需养成会反思、勤反思的习惯,不断思考自己在教学过程中出现的问题和不足。

总之,通过这次公开课,自己感触颇多。一方面暴露出自己有好多不足,另一方面说明自己的成长空间还很大。最后这篇反思就以这句诗结尾吧:路漫漫其修远兮,吾将上下而求索。

平行线的判定教案篇五

知识与技能

1、平行线的性质定理的证明.

2、证明的一般步骤.

过程与方法

1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.

2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.

情感与价值观

通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.

教学重点

证明的步骤和格式.

教学难点

理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.

教学过程:

一、创设现实情境,引入新课

节课我们就来研究“如果两条直线平行”.

二、讲授新课

在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:

同位角相等两直线平行,.

议一议

利用这个公理,你能证明哪些熟悉的结论?

想一想

(2)你能根据所作的图形写出已知、求证吗?

(3)你能说说证明的思路吗?

平行线的判定教案篇六

1.了解推理、证明的格式,理解判定定理的证法。

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导

1.教师教法:启发式引导发现法。

2.学生学法:积极参与、主动发现、发展思维。

三、重点·难点及解决办法

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进行推理。

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点。

2.通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片。

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课。

2.通过教师指导,学生探索新知,练习巩固,完成新授。

3.通过学生自己总结完成小结。

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

平行线的判定教案篇七

本节的重点是:平行线判定公理及两个判定定理。一般的定义与第一个判定定理是等价的。都可以做判定的方法。但平行线的定义不好用来判定两直线相交还是不相交。这样,有必要借助两条直线被第三条直线截成的角来判定。因此,这一个判定公理和两个判定定理就显得尤为重要了。它们是判断两直线平行的依据,也为下一节,学平行线的性质打下了基础。

本节内容的难点是:理解由判定公理推出判定定理的证明过程。学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解。有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。这些都使几何的入门教学困难重重。因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范。创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。

这节课我比较满意的是:

1、活动单的导学使学生顺利完成了学习目标;

2、学生的小组合作已初见成效;

3、课堂上有意识地锻炼学生使用规范性的几何语言;

4、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。

这节课还需改进的是:

上好一节课不能只看老师在规定的时间完成了教学内容重要的是学生通过这节课学会了什么,更重要的是学生是怎样学会的;通过小组合作自己学会的才能说老师这节课是成功有效的教学。

平行线的判定教案篇八

边边边判定定理

人教版数学八年级上册

崔志伟

第十二章第二节

1

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

学生合作探究法、教师讲解结合谈话法等综合教学方法

黑板板书教学

阶段

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的'情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即sss,教师解释s为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服