当前位置:网站首页 >> 作文 >> 最新平行四边形的判定教学反思 平行线的性质与判定教学反思(汇总7篇)

最新平行四边形的判定教学反思 平行线的性质与判定教学反思(汇总7篇)

格式:DOC 上传日期:2024-06-08 19:41:06
最新平行四边形的判定教学反思 平行线的性质与判定教学反思(汇总7篇)
时间:2024-06-08 19:41:06     小编:zdfb

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

平行四边形的判定教学反思平行线的性质与判定教学反思篇一

平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习了平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。

1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。

2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。

3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。

4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。

5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。

1、培养了学生的动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。

2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。

3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。

4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。

1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。

2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。

3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。

总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。

平行四边形的判定教学反思平行线的性质与判定教学反思篇二

《 平行四边形的判定》是学生学习了平行四边形的重要知识。一共分为4个课时。在学习了平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。

充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。

平行四边形的判定教学反思平行线的性质与判定教学反思篇三

本节课是《4、2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。

因此,本节课的教学环节我做了这样的设计:

第五环节,课本上的随堂练习巩固知识点;

第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。

教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。

本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。

1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。

2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。

3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。

4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。

5、对学生的学习与做题多些方法性的指导。

平行四边形的判定教学反思平行线的性质与判定教学反思篇四

(第一课时)

一、素质目标

(一)知识点

2.使学生理解判定定理与性质定理的区别与联系.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

四、课时安排

2课时

五、教具学具准备

投影仪,投影胶片,常用画图工具

六、师生互动活动设计

复习引入,构造逆命题,画图分析,讨论证法,巩固应用.

七、步骤

【复习提问】

2.将以上性质定理分别用命题的形式叙述出来.

【引入新课】

用投影仪打出上述命题的逆命题.

【讲解新课】

1.平行四边形的判定

如图1,在四边形 中,如果 , ,那么 .

∴ .

同理 .

∴四边形 是平行四边形,因此得到:

类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?

由此得到:

我们再来证明下面定理

(该定理采用规范证法,如图1由学生自己证明,可引导学生用前面三种依据分别证明,借以巩固所学知识)

2.判定定理与性质定理的区别与联系

例1 已知: 是 对角线 上两点,并且 ,如右图.

求证:四边形 是平行四边形.

【总结、扩展】

1.小结:(投影打出)

(1)本堂课所讲的判定定理有

2.思考题

教材p144b.3

八、布置作业 

教材p142中7;p143中8、9、10

九、设计

十、随堂练习

教材p138中1、2

补充

1.下列给出了四边形 中 、 、 的度数之比,其中能判定四边形 是平行四边形的是( )

a.1:2:3:4 b.2:2:3:3

c.2:3:2:3 d.2:3:3:2

2.在下面给出的条件中,能判定四边形 是平行四边形的是( )

a. , b. ,

c. , d. ,

3.已知:在 中,点 、 在对角线 上,且 .

求证:四边形 是平行四边形.

平行四边形的判定教学反思平行线的性质与判定教学反思篇五

【引入新课】

【讲解新课】

引导学生结合图1,把已知,求证具体化.

证明:(由学生口述)

(2)平行四边形判定等知识的综合应用

例2  已知: , 分别是 、 的中点,结合图1,求证: .

分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形 为平行四边形(显然后者较前者简单)

证明:(略).

例3  画 ,使 ,,

(按课本讲)

【总结、扩展】

1.小结

2.思考题:

已知:如图1,在△ 中, , .

求证:

八、布置作业 

教材p143中11、12,p144中13、14

九、板书设计 

十、背景知识与课外阅读

美妙的莫雷定理

求证:∠△ 是正三角形.

十一、随堂练习

教材p140中1、2

补充:判断

(1)一组对边平行,一组对边相等的四边形是平行四边形( )

(2)一组对角平行,一组对角相等的四边形是平行四边形( )

(3)一组对边相等,一组对角相等的四边形是平行四边形( )

(4)一组对边平行且相等的四边形是平行四边形( )

平行四边形的判定教学反思平行线的性质与判定教学反思篇六

昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式,平行四边形判定课后反思。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。

教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。

在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上,教学反思《平行四边形判定课后反思》。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。

(1)一题多变

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西———核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。

(2)一题多解

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

(3)多题一法

本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。

教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。

平行四边形的判定教学反思平行线的性质与判定教学反思篇七

1.重点 定理

2.难点 灵活运用判定定理证明平行四边形

本节研究方法,重点是四个判定定理,这也是本章的重点之一.

设计示例1

[目标] 通过本节课,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

[过程]

一、准备题系列

1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)

(让学生思考讨论,再各自画图,画好后互相交流画法,巡回检查。对个别差生稍加点拨,最后请学生回答画图方法) 学生可能想到的画法有:⑴ 分别过a、c作dc、da的平行线,两平行线相交于b; ⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶ 分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。

还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出 连结ac,取ac的中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。

二、引入新课

上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得 研究的问题(课题)。

三、尝试议练

1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。

2.现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。

自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)

3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)

完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)

四、变式练习

⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)

⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(补充)

⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)

观察下图:

平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc(怎样证最简便?)

五、课堂小结

1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

2.这些方法中最基本的是哪一条?

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服