在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
湖北省中考数学试题 湖北省初中数学中考试卷篇一
性质:是一个非负数;
2二次根式的乘除:
3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4海伦-秦九韶公式:,s是的面积,p为.
1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.
2配方法:将方程的一边配成完全平方式,然后两边开方;
因式分解法:左边是两个因式的乘积,右边为零.
3一元二次方程在实际问题中的应用
4韦达定理:设是方程的两个根,那么有
1:一个图形绕某一点转动一个角度的图形变换
性质:对应点到中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3关于原点对称的点的坐标
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧.
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.
5点和圆的位置关系
点在圆外d>r
点在圆上d=r
点在圆内dr+r
外切d=r+r
相交r-r
湖北省中考数学试题 湖北省初中数学中考试卷篇二
抛物线顶点坐标公式
y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)
y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)
相关结论
过抛物线y^2=2px(p>0)焦点f作倾斜角为θ的直线l,l与抛物线相交于a(x1,y1),b(x2,y2),有
①x1_x2=p^2/4,y1_y2=—p^2,要在直线过焦点时才能成立;
②焦点弦长:|ab|=x1+x2+p=2p/[(sinθ)^2];
③(1/|fa|)+(1/|fb|)=2/p;
④若oa垂直ob则ab过定点m(2p,0);
⑤焦半径:|fp|=x+p/2(抛物线上一点p到焦点f距离等于到准线l距离);
⑥弦长公式:ab=√(1+k^2)_│x2-x1│;
⑦△=b^2-4ac;
⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;
⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有两个实数根;
⑵△=b^2-4ac=0有两个一样的实数根;
⑶△=b^2-4ac<0没实数根。
湖北省中考数学试题 湖北省初中数学中考试卷篇三
实数
一、重要概念1.数的分类及概念数系表:
说明:“分类”的原则:1)相称(不重、不漏)2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法
②性质:a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01时,1/a<1;d.积为1。
4.相反数:①定义及表示法
②性质:a.a≠0时,a≠-a;b.a与-a在数轴上的位置;c.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:a.直观地比较实数的大小;b.明确体现绝对值意义;c.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:a.高级运算到低级运算;b.(同级运算)从“左”
到“右”(如5÷×5);c.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。