每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
找最大公因数微课篇一
1、探索找两个数的最大公因数的一般方法。
2、理解公因数、最大公因数的意义,体会因数,公因数。最大公因数三者的紧密联系。
教学重点:
学会找两个数最大公因数的一般方法。
教学难点:
会正确找出两个数的最大公因数。
教学过程:
一、板书课题
过渡语:这节课我们一起来学习《找最大公因数》。学习新课之前,同学们回忆:找因数的方法是( )。
二、揭示目标
这节课的学习目标是什么呢?请看:(出示学习目标)
1、探索找两个数的最大公因数的一般方法。
2、理解公因数、最大公因数的意义,体会因数,公因数。最大公因数三者的紧密联系。
有信心实现这节课的学习目标吗?
三、自学指导
下面请看自学指导,希望同学们在“自学指导”的引领下达到学习目标。
1、用写乘法算式的方法,找出12的因数,填在圈里。
2、同法,找出18的因数,填在圈里。
3、在两个圈里圈出12和18 公有的因数。
4、思考:圈出的公有因数填在(3)的哪个地方,12、18剩余的因数分别填在哪里?(兵教兵)完成填空。
打开课本第45页,重点是这一页的“填一填”部分(不做“练一练”部分)
(5分钟后比谁能完成自学任务)。自学竞赛开始,比谁看书认真,自学效果好!
四、先学
1、看一看,做一做。(完成自学任务的同学举手示意)
2、教师巡视,关注后进生,了解学情,收集错例,在头脑中进行第二次备课。
过渡语:(4分钟后)师问:“看完的请举手?”“做完的把手放下”“没有看懂的同学说说你哪一处不理解”
下面老师就来检测一下同学们的自学效果。(围绕“自学指导”检测自学效果)
五、后教
1、汇报:围绕“自学指导”检测自学效果。
2、讨论交流:公因数和最大公因数的意义。(组内交流)
先指名自己组织语言说一说,再集体总结:最大公因数
12和18两个数公有的因数,叫做这两个数的公因数;其中最大的一个因数叫它们的最大公因数。(齐读课本中的话)
3、交流:怎样找两个数的最大公因数?(用“先……再……最后……”的形式)(组内交流,汇报)
12的因数:
18的因数:
方法与过程
先找每个数的所有因数 列举法 再找这两个数的公因数
最后找出它们的最大公因数
4、体会找因数、找公因数和找最大公因数之间的紧密联系?
找 因 数---→找公因数---→找最大公因数
想一想:两个数有公因数、最大公因数,三个数有没有公因数、最大公因数呢
六、全课总结
师:同学们这节课你学到哪些知识?今天的学习目标你达到了吗?(再看学习目标)
七、当堂训练(课本46页“练一练”第3题)
(补充1:在第二行对应的圈下面补充写:12和15的最大公因数、12和18的最大公因数、15和18的最大公因数。
下面,大家就运用新知识来做作业吧,要有信心做正确、书写要干净整齐。
学生板演时,教师指导书写格式。课本用画圈的格式找公因数太不方便,我们可以用“一行排列”的格式书写)
(补充2:12、15和18的最大公因数:)(兵教兵)
八、布置作业(课本45页“练一练”1题、2题)
思考:1、8和16是什么关系,它们的最大公因数是哪个数?5和7呢?它们的最大公因数又是怎样的?2、你能试着总结找最大公因数的其他方法吗?(下节课,我们继续探究找最大公因数的方法)
板书设计:
12的因数:
18的因数:
找最大公因数微课篇二
学习目标:
1.探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
2.经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
教学重点:理解公因数和最大公因数的意义,会在集合图中分别表示两个数的因数和它们的公因数。
教学难点:会用列举法找出两个数的公因数和最大公因数。
教学过程:
一、创设情境,导入新课。
1.课件出示:两根小棒,长分别是12cm、18cm,要把它们截成同样长的小棒,不许有剩余,每根小棒最长是多少厘米?
学生讨论,汇报解决问题的方法。
2.在学生讨论的基础上引入课题:通过这节课的学习,我们会很快找到解决这个问题的方法。
(板书:找最大公因数)
二、授新。
1.首先,我们分别找出12和18的全部因数。
①回顾我们“找因数”那节课,以12为例,我们是怎样找的?在找的过程中,怎样避免重复和遗漏呢?
预设:写出12=1×12=2×6=3×4的算式。
从1开始写,原因是什么?(因为1是所有自然数最小的因数。)
到什么数字结束?(出现重复,或者是出现很相近甚至相等的数字,例如6×6,3×4)
结论要一对一对的写。
②生独立完成,汇报。
师板书:12的因数有:1,12,2,6,3,4
18的因数有:1,18,2,9,3,6
③但是老师发现,有些同学是这样写的,可以吗?
1,12,2,6,3,4 1,18,2,9,3,6
12的因数 18的因数
2.深入研究。
思考:12和18相同的因数有哪几个呢?和同桌交流你的方法。
生独立找,小组交流,师巡视,生汇报。
(生汇报,师板书:12和18的相同因数有:1,2,3,6,)
预设:方法①12的因数有:1,12,2,4,3,6
18的因数有:1,18,2,9,3,6
在黑板上,把相同的因数圈起来。
方法②看12的因数中有哪些是18的因数。
方法③看18的因数中有哪些12的因数。
师追问:4为什么不是12和18的相同因数呢?
对比三种方法,实际的题目中,你们觉得哪种好呢?
3.揭示概念。
想这样的结论,1,2,3,6是12和18的相同因数,在以后的学习中我们会经常遇见,为了方便起见,我们给它们取了一个名字,叫“公因数”。
那么,18和12的公因数有哪些呢?生汇报,书写在练习纸上。
汇报:1,2,3,6是18和12的公因数。师修改板书。(“相同因数”改成“公因数”)
师指课题:那到底什么是12和18的最大公因数呢?
生试着回答。
师小结。
在18和12的公因数中,有一个最大的数字是6,这个6就是12和18的最大公因数。师板书。
接下来,我们来看看概念是怎么说的?
展示ppt。
两个数的相同因数,称作它们的公因数。
其中最大的一个数,就是这两个数的最大公因数。
生齐读。
4.用集合图表示公因数的方法。
①出示空白集合图,你觉得中间部分填什么?
生答:12和18的公因数,投影展示。
②学生独立填写,汇报交流,并说说原因。
三.这节课我们主要认识了“公因数”和“最大公因数”。
回忆:怎样找出两个数的公因数和最大公因数呢?
生回答。
ppt展示:找出两个数的因数。
找出两个数的相同因数。
确定两个数的最大公因数。
四.接下来,我们来检查自己是否学会了。
1.找出9和15的所有因数及最大公因数,并与同伴交流你是怎么找的。
9的因数有: ;
15的因数有: ;
9和15的最大公因数有: 。
学生在练习纸上独立完成,汇报,集体订正。反馈结果。
2.填一填,与同伴交流。
6的因数 8的因数 6和8的公因数
学生在练习纸上独立完成,汇报,集体订正。反馈结果。
3.找出下列各组数的最大公因数。
2和4 3和7
5和25 7和13
27和9 9和8
16和4 8和7
学生在练习纸上独立完成,汇报。
思考:你发现了什么?
同桌交流。和孩子们一起发现找特殊数的最大公因数的方法。
①两个数是倍数关系,最大公因数是较小数。
②两个数是互质数,最大公因数是1。
只得出结论,不用说原因。(在以后的学习中,我们还会遇见很多这样的特殊情况。)
学生在练习纸上独立完成,汇报,集体订正。反馈结果。
五.回顾课前。
看来同学们对这节课的内容掌握的不错,那现在我们看看开课前的题目,你能解决吗?
有两根小棒,长分别是12厘米,18厘米,要把它们截成同样长的小棒,不许有剩余,每根小棒最长是多少厘米?
学生齐读题目,在练习纸上独立完成。
六.小结。
这节课我们学会了哪些?你有什么收获?
学生谈本节课的收获。
板书: 找最大公因数
12的因数有:1,12,2,4,3,6
18的因数有:1,18,2,9,3,6
12和18的相同因数(公因数):1,2,3,6
12和18的最大公因数:6
找最大公因数微课篇三
科目:五上数学 授课人:李冬林 授课时间:9月6日
教学目标
1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。
2.在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。
3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。
教学重点
在用小正方形拼长方形的活动中体会找一个数的因数的方法。 教学难点:
提高学生有序思考的能力。
教具和学具:12个1平方厘米的小正方形。
教学过程
(一)创设情境,激情导入 师:同学们喜欢做拼图游戏吗?
请拿出准备好的正方形,在你们的小组里用你们准备的12个小正方形拼成长方形,看谁拼出的长方形种类多。也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录。
(二)合作交流,探索新知 活动一:合作探究。
1、学生:用12个小正方形自由拼(画)长方形
师:刚才老师在观察同学们操作时,都有自己的拼法,下面把我们的学习成果交流一下,看看其他同学的成果,总结一下能拼出几种长方形? 2、引导学生合作交流中总结出找一个数的因数的基本方法。
师:你是怎样拼的,说说好吗? 可能的拼法有:
1:横着摆了12个小正方形。 2:横着摆6个,摆了2排。 3:横着摆4个,摆了3排。
4:我还多摆了一种,横着摆三个,摆了4排。 5:竖着摆12个。
6:横着摆2个,竖着摆6个。 师:你能把这些摆法用算式写出来吗?
依学生汇报板书:1×12=12 2×6=12 12×1=12 6×2=12 3×4=12 4×3=12 师:请同学们观察一下,哪两道算式的因数一样? 学生观察算式,找出因数一样的算式。 1:3×4=12 和 4×3=12的因数一样。 2:1×12=12和12×1=12的因数一样。 3:2×6=12 和6×2=12的因数一样。
师:那么,这6个算式最少能用几种算式表示出来?
引导学生说出能用3种方法表示,这三种方法是:1×12=12 2×6=12 3×4=12,并指明算式一样时选择其中一种说出来。 板书:12=1×12=2×6= 3×4
师:同学们观察一下,12的因数有哪几个? (学生说出12的因数有:
1、12、
2、
6、
3、4。) 师:拼长方形与找因数有什么关系呢? (指名学生说一说) 师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢?
引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。
3、引导得出“有序思考”的方法。
师:通过拼长方形的方法,我们知道了寻找因数的方法。那么找一个数的因数怎样做到既不重复也不遗漏呢?
根据学生发言小结:找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。 师:请同学们按顺序说出12的因数。
板书:12的所有因数有:
1、
2、
3、
4、
6、12。 三:练习师辅导 书本9.1,2,3题。 四:布置作业
找最大公因数微课篇四
《最大公因数》教学设计
《最大公因数》教学设计教学目标:
1、结合具体情境理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、会用公因数、最大公因数的知识解决简单的实际问题,体验数学与日常生活的联系。
3、通过学生合作探究等活动,培养学生的合作能力和抽象概括能力,以及激发学生对探究数学知识的兴趣。
教学重、难点:
重点:理解公因数和最大公因数意义,会求最大公因数。
难点:理解公因数和最大公因数的意义。
教学准备:
ppt课件,长方形的方格纸,小正方形纸若干。
教学过程:
一、预设情境、提出问题
出示主题图:老师家贮藏室长16 dm,宽12 dm,如果要用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块)。可以选择边长是几分米的地砖?
二、探究交流,抽象概念。
1、探究、了解公因数和最大公因数
(1)合作探究
提供学具,学生操作。
(2)反馈交流
得到:边长是1分米,2分米,4分米的地砖符合要求。
(3)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是8分米呢?
(4)了解公因数
a、引出猜想:
我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?
b、枚举验证
16的因数有:1、2、4、8、16 12的因数有:1、2、3、4、6、12 c、利用集合圈加深感知,引出公因数名词
(5)了解最大公因数
利用铺最少砖引出最大公因数名词。
2、巩固公因数和最大公因数的意义。
a、完成做一做。
b、巩固公因数与最大公因数的意义。
3、抽象出公因数和最大公因数的概念。
引导学生概括公因数和最大公因数的概念(教师板书)
三、尝试练习、探索方法。
1、尝试:求最大公因数:18和27 2、交流反馈。
四、巩固练习,完善新知。
1、找出下面每组数的最大公因数。
6和9 15和20 4和12 16和32
(完成后,解决成倍数关系的两个数的最大公因数的求法)
2、选择题
(1)16和48的最大公因数是_。
a.4 b.6 c.8 d.16
(2)甲数是乙数的倍数,甲、乙两数的最大公因数是_。
a.1 b.甲数c.乙d.甲、乙两数的积
3、写出下列各分数分子和分母的最大公因数。
7/9 8/36 18/72 9/15 4、*小巧匠。
12 cm 16 cm 44 cm
要把它们截成同样长的小棒,不能有剩余,每根小棒最长是多少厘米?
(完成之后,完善公因数的概念。)
五、课堂小结:通过这节课的学习,你有什么收获?
msn(中国大学网)
找最大公因数微课篇五
教学内容:
青岛版数学四年级下册第七单元分数加减法信息窗一
教学目标:
1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。
2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。
3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。
教学重点:
理解公因数和最大公因数的意义,掌握求两个数公因数和最大公因数的方法。
教学难点:
理解用短除法求最大公因数的算理。
评价任务设计:
1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。
2、教师对学生在学习活动中体会数形结合思想的评价。
3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。
教学过程:
一、复习导入
师:昨天,老师布置了这样一项课前作业。
师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)
师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)
问:还有不同分法吗?(生答师演示)
预设:汇报出错,比如4厘米――师引导观察:如果用边长4厘米的小正方形来分的话,长可以分几个呢?这样还能不能把长方形正好分完呢?
师:其他同学还有不同意见吗?
同位互相看一看各自是怎样分的,交流一下自己的想法!
二、认识公因数和最大公因数
1、教学公因数和最大公因数的意义,总结列举法
师:通过研究我们发现,小正方形的边长可以是1厘米、2厘米、3厘米或者是6厘米,最多是几厘米呢?
师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?
生:1、2、3、6是18的因数也是24的因数。
师:我们把18和24的因数都找出来,对比着看一看吧!
师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)
师:对比观察18和24的因数,你有什么发现?
生:它们的因数中都有1、2、3、6、
师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。
师:公因数中哪个最大啊?生:6最大
师:我们就把6叫做18和24的最大公因数。
师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。
师:刚才我们分别列举出了18和24的因数,又找出它们的公因数和最大公因数,这种找公因数和最大公因数的方法叫列举法。【板书:列举法】
2、教学集合圈
师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。
24的因数
18的因数
【课件出示】
123612346
91881224
师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。
问1:现在你知道左边这一部分表示的什么吗?(指名答)
右边这一部分呢?大家一起说!两个集合圈相交的部分呢?左半部分又表示什么呢?大家一起说右半部分表示的什么?
师:下面请同位互相说一说集合圈中每一部分表示什么。
师小结。
师:现在给你一个集合圈你会填了吗?
师:看到这道题你能不能直接填呢?那应该先怎么办?
生:先找到16和28的因数和公因数,再填集合圈。
师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。
(生独立完成,师巡视)
展示与评价
师:谁来说一说你是怎么填的?(指名汇报)
给大家说说你先填的什么?又填的什么?
指名说一说,及时评价。
师:我们再来看看这位同学的作业。
师:同位互相检查一下,不对的改正过来。
三、认识短除法
1、讲解短除法
师:同学们,除了用列举法找两个数的公因数和最大公因数。还有一种方法也能找出两个数的最大公因数,但是需要你用心观察才能发现,你们愿意接受挑战吗?
师:请大家先把18和24分解质因数。
师:谁来说说你分解质因数的结果?
师:请同学们仔细观察这两个式子,你有什么发现?
生:我发现它们都有质因数2和3、
师:18和24公有的质因数2和3与它们的最大公因数6之间有什么关系呢?生:2乘3等于6
师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。
师边板书边讲解……
师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。
问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)
2、练一练
师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!
师:谁来说说你是怎么做的?(指名学生展示汇报)
问:你认为他做的怎么样?
四、练习与应用
1、练一练(苏教版p27t1)
师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!
展示汇报
师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)
2、扎花束
师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)
问:同学们想一想这道题其实在求什么?
师:选择自己喜欢的方法把它完成在练习本上。
问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?
2、数学知识
师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!
五、课堂总结:通过这节课的学习你有哪些收获?
找最大公因数微课篇六
【教学目标】
1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。
2、使学生会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
【教学重、难点】
理解两个数的公因数和最大公因数的含义。
【教学准备】
学生准备12cm、宽8cm的长方形纸片,6张边长6cm的正方形纸片,8张边长4cm的正方形纸片。
【教学过程】
一、创设情境,激趣导课
1、这节课老师先请大家帮我解决一个问题:我们家有一个长18分米、宽12分米的贮藏室。现在老师想给贮藏室里铺上地砖。我在瓷砖市场看到两种砖,一种是边长为4分米的正方形瓷砖,一种是边长6分米的正方形瓷砖,你们帮我选一选,哪一种瓷砖能正好用整块铺满?
二、动手操作,探求新知
1、请同学们拿出准备好的长方形、正方形纸片,自己试着摆一摆。
2、生操作,师检查。
3、通过摆小正方形,我们发现了什么?老师应该选哪一种地砖?
(边长6分米的正好整块铺满,边长4分米的不能正好铺满,应该选边长6分米的地砖。
4、边长6分米的地砖长边和宽边各铺了几块?用算式怎样表示?地砖的边长6分米和贮藏室的长18分米,宽12分米有什么关系?
(长铺3块18÷6=3
宽铺2块12÷6=26即能被18整除,也能被12整除)
5、边长4分米的地砖不能正好铺满?长、宽边各铺了几次?用算式怎样表示?
(长铺了4次18÷4=4…2
宽铺了3次12÷4=34不能被长18整除,所以铺不满,能被12整除,所以宽能铺满)
6、比较两组算式,说说地砖的边长符合什么条件能用整块正好铺满?
边长既能被12整除,也能被18整除。
7、想象延伸
根据我们得出的结论,你在头脑里想一想,贮藏室还可以选择边长几分米的地砖?小组互相交流,并说说你是怎么想的?
(边长1分米,2分米,3分米的正方形地砖都能正好整筷铺满,因为这3个数既能被12整除,也能被18整除。)
1、2、3、6这4个数与18有什么关系?与12呢?
8、揭示概念
讲述:1、2、3和6既是18的因数,又是12的因数,它们就是12和18的公因数。其中最大的公因数是6,6就是12和18的最大公因数。
9、4是18和12的公因数吗?为什么?
三、自主探索,用列举的方法求公因数和最大公因数。
1、刚才我们认识了公因数和最大公因数,那么怎样求两个数的公因数和最大公因数呢?接下来我们一起探究这个问题。
(自主探索)提问:12和8的公因数有哪些?最大公因数是几?
你能试着用列举的方法找一找吗?
2、交流可能想到的方法有:
①依次分别写出8和12的所有因数,再找出公因数
②先找8的因数,再从8的因数里找出12的因数
③先找12的因数,再从12的因数里找出8的因数
比较②、③种方法,这两种方法有什么相同之处?哪一种简单,为什么?(8的因数个数少。)
3、明确:8和12的公因数有1、2、4.4就是8和12的最大公因数。
4、用集合图表示
8和12的公因数也可以用集合圈来表示,我们用左边的圈表示8的因数,用右边的圈表示12的因数,那么相交的部分表示什么?应该填什么数?
提示不要重复填写,提问:6是12和8的公因数吗?为什么?3呢?8呢?
四、巩固练习
我们学会了用两种不同的方法来求两个数的公因数和最大公因数,下面我们来做一组练习。
1、练一练
自己完成,注意找的时候一对一对找,不要遗漏。
2、练习五的第一题、第2题、第3题,自己完成。
五、总结
这节课我们主要认识了公因数和最大公因数,掌握了求两个数的公因数和最大公因数的方法。这一知识在实际生活中应用非常广泛,下节课我们主要应用这一知识来解决实际问题。
找最大公因数微课篇七
教学目标:
1、结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。
3、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。
教学重点:理解公因数与最大公因数的意义,用短除法求最大公因数的方法。
教学难点:找公因数和最大公因数的方法。
教学过程:
一、情境导入
师:我们鲸园小学的校本课程开展的丰富多彩,同学们都报了自己喜欢的课程去学习,这样更有利于我们充分的展示自己的爱好特长。我们四五班就是每次校本课程的剪纸活动班,你喜欢剪纸吗?瞧,这是老师搜集了一些同学们在活动中的好作品。(课件展示剪纸作品)
师:现在我们来制作奥运福娃。第一步必须先裁好纸张。老师这里有一张长方形的纸长12厘米,宽18厘米。把这张纸剪成边长是整厘米的正方形,猜猜看,要想剪完后没有剩余,正方形的边长可以是几厘米呢?(学生猜)
师:这只是我们的猜测,你要用具体的事实来说服大家。
二、解决问题
1、师:到底哪位同学的猜想是正确的呢?为了验证一下,请每个组拿出准备好的学具,用小正方形纸片(要求学生剪成彩色的)在长方形的纸上摆一摆,把摆的情况记录下来,看有几种不同的摆法。
用手中的学具摆摆看。(学生分组进行拼摆并记录,在小组内进行交流)。
2、师:请每个组汇报一下你们摆的结果。
小组汇报
师:如何剪才能没有剩余?
师:那么这张纸能剪几张?
师:还有其他剪法吗?(2、3、6让学生充分进行交流)
师:请大家认真观察我们摆的结果,你有什么发现?这些1、2、3、6与12和18有什么关系?我们能不能从12和18的因数上来解释上面的剪法呢?
独立观察,总结规律,教师根据学生的发言进行小结。
师:也就是说,要想正好摆满,正方形纸片的边长数应既是12的因数,也是18的因数。所以,1、2、3、6是12和18的公有的因数,我们可以把这4个数叫做12和18的公因数,公因数中最大的数是几?
师:我们把这个数称为12和18的最大公因数
师:为了更形象地表示出1、2、3、6与12和18的关系我们可以用集合圈的形式表示出来。出示相交的集合圈
(用集合圈的形式分别板书12和18的因数,然后把两个集合圈连起来,用交集的形式板书12和18的公因数。)
师:中间部分1、2、3、6既是12的因数,也是18的因数。它们是12和18的公因数,其中6最大,是24和18的最大公因数。(出示课件)
3、怎样找12和18的公因数和最大公因数呢?请同学们根据已有的知识在小组内合作探索一下找公因数的方法
学生探索并交流。
4、练一练:用集合圈的形式求出16和28的公因数和最大公因数。
5、师:求两个数的公因数和最大公因数还可以用列举法。(出示课件)
6、师:求公因数和最大公因数除了用集合圈和列举法之外,还有一个更简便的方法(出示用短除法求12和18的公因数和最大公因数)
师引出最大公因数是它们共有质因数的乘积。
三、练习
1、用短除法求36和42的最大公因数。
2、生活中的数学:
用这两朵花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?
3、拓展练习:
先分别找出下面各组数的最大公因数,再仔细观察,你发现了什么?
18和368和9
6和1217和15
24和726和7
8和1616和21
四、谈谈这节课你有什么收获?
找最大公因数微课篇八
黑龙江省农垦总局牡丹江管理局庆丰农场学校 代春红
【摘要】1.复习铺垫:找因数的方法。2.建立模型:交流预习效果;逐步验证(问题情境、分析策略、猜测预想);确定方法;寻求技巧。3.解释应用(基本练习、综合练习、知识拓展)。4.回顾总结:谈收获、质疑问难。
【关键词】探索;渗透;体验;有序;迁移;预习
教学目标:
1.让学生在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2.在探究过程中渗透集合思想,体验解决问题策略的多样化。
3.继续培养学生的抽象能力和解决问题能力。
教学重点:准确找到公因数与最大公因数。教学难点:最大公因数的确定。教学关键:养成有序罗列的好习惯。教学方法:情境法引导法。学生学法:迁移法。教学用具:幻灯。
教学过程:
一、复习铺垫
1.教师提问:什么是因数?(学生自由读书12页的概念。教师重点强调:“因数”不是孤立存在的,它是数与数之间的一种关系。)
指导学生语言描述:例如:4是8的因数。错误的活法:4是因数。
2.指名汇报:找因数的方法是什么?(鼓励学生列有序乘法算式,按数对罗列写。全班共同朗读数数学书第13页内容。)
二、建立模型
㈠交流预习效果
昨晚老师布置了预习,呈现“预习提纲”:
1.数学信息是什么?2、你能提出怎样的数学问题?3、这个问题在解决时需要用到过去学过的哪些旧的知识?4、新旧知识有什么联系和区别?(自己能读懂的和不太明白的地方请用笔做好批注。)
引导回忆:本课的问题情境是什么?这个情境涉及到哪些数学知识?(围绕旧知识和新知识展开讨论。)
㈡、逐步验证
1.问题情境。
指名读书79页例1:
最近代老师家买了新房子,其中有一个长16分米、宽12分米的贮藏室,她想用边长是整分米数的正方形地砖把储藏室的地面铺满,使用的地砖都是整块。可以选择边长是几分米的地砖?边长最大是几分米?
2.寻求策略。
①梳理关键词:
你知道代老师对铺地砖的要求是什么吗?(交流“正方形地砖”“都是整块的”“边长还要是整分米数”什么是整分米数?)交流预习效果。
昨晚布置了预习,回忆……
3.猜测预想:
①出示学具格纸,鼓励学生入境操作与思考:
②独立思考、集中交流。(学生根据自己的假象与操作展开汇报交流,完成思维碰撞与共享。)
a.第一种数学思想:交流边长是“4”为什么?→你们觉得行吗?→铺满
b.第二种数学思想:交流边长是“2”出示一个角→你觉得长边、短边可以分别铺几块呢?→铺满
c.第三种数学思想:交流边长是“1”铺一个角→你觉得长边、短边可以分别铺几块?→铺满
如果用其他方法,合理的都要鼓励动脑。
㈢确定方法:(全班读书第80页)
1.认识公因数和最大公因数。(由“因数”概念迁移开来,学习“公因数”、“最大公因数”的概念,这里注意培养学生的知识迁移与知识再生的能力。)
(1)讨论交流,区分数学问题生成的不同状态。
还有没有别的铺法?(教师鼓励学生,广泛想开去,逐步拓展学生的思维螺旋上升能力。)
师生互动:边长是3分米的地砖行吗?为什么?边长是5分米呢?
(宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的)
(2)抽象公因数概念。
①。学生独立尝试用“罗列法”分别写出16、12的因数。
16的因数有:1、2、4、8、16
12的因数有:1、2、3、4、6、12
一一对应观察数据的相同于异同,指名汇报:你发现什么?
②。根据自学效果,师生顺势揭示:“公因数”概念。
谈发现:1、2、4既是12的因数又是16的因数。
板书:
“公因数”:几个数共有的因数,就是这几个数的公因数
16和12的公因数有:1、2、4
(3)用集合圈表示
我们可以用集合圈来表示两个数的公因数
(点击课件出示两独立集合圈)
(4)认识最大公因数
板书“最大公因数”:16和12的最大公因数是4。
⑸运用新知识,解决“老”问题
如果现在让我们考虑“可以选择边长是几分米的地砖”,我们可以直接(写因数,找公因数)。
那如果解决“边长最大是几分米”呢?(最大公因数)
㈣寻求技巧:
1.思考:
寻求两个数的最大公因数时,先确定哪个数的因数比较好?
2.总结“先找小的数的因数,再看哪些是大的数的因数”。
3.定法:这些方法实际都是属于“列举法”,在解决问题时你可以选择自喜欢的方法。
三、解释应用
(一)基本练习:
1.找出下列每组数的最大公因数
4和86和181和78和9
①独立做,板书面批。②观察发现:
找最大公因数有技巧:有倍数关系的两个数,它们的最大公因数是较小数。有互质关系和相邻关系的两个数,它们的最大公因数是1。
(二)综合练习:
大册28页第一题。(独立做,板书面批)
(三)知识拓展:书81页,知识窗。
(四)回顾总结:1.谈收获:通过本节课的学习,你的预习效果怎样?你对自己最满意的是什么?
2.质疑问难:你还有问题吗?
质疑问难。
板书设计:10、最大公因数
16的因数有:1、2、4、8、16
12的因数有:1、2、3、4、6、12
16和12的公因数:1、2、4.
找最大公因数微课篇九
找最大公因数教学反思
反思本课教学,我认为教师做的比较成功的地方有以下几个方面:
一、复习和新知的传授能够联系学生的学习、生活实际。
首先教师让每个学生把自己的学号别在胸前,本节课的教学围绕学号展开,也就是借助学号这个载体,让学生复习质数和合数的概念,同时在教学最大公因数概念的时候,也是借助学号完成的,这样的设计联系了学生实际,借助学生最熟悉的学号这个载体,完成了从旧知到新知的过渡,符合学生的`认知规律,同时也有助于学生对新知的理解。
二、教师注重创设情境、激起学生的认知冲突来揭示新知。在这个环节中,教师让12的所有因数和18的所有因数同时到前面来站好,当学生找不到位置的时候,教师引导全体同学作裁判,这些同学应该站在什么位置?从而来揭示出公因数和最大公因数。这种情境的创设符合学生的认知规律,调整了学习节奏和精神状态,对学生探索、构建新知起着积极的推动作用。同时可以激发矛盾,突出知识的生长点,唤起学生思考和解决问题的激情。在这个前提下“公因数”和“最大因约数”的概念就水到渠成了。
三、课堂教学中体现了精讲多练。
本节课,教师从复习导入到新知结束,只用了不足15分钟。余下的时间学生做练习,学生自主练习的时间比较长。学生在练习的过程中不断探索、不断发现规律。练习的设计主要是体现分层次教学,让学生在分层次的练习活动中探索并掌握求两个数最大公因数的方法,掌握这些规律,有助于学生今后求最大公因数的速度和正确率。练习容量比较大,有助于学生更好的达到本节课的教学目标。
找最大公因数微课篇十
本节课教学的内容是认识公因数、最大因数以及求两个数的最大公因数的方法,这些知识是在学生掌握了因数、倍数、找因数的基础上教学的。结合本节课的特点,联系本班学生的实际情况,教师在教学过程中做了如下的尝试:
一、适时地渗透集合思想。在教学例1时,解题过程不仅呈现了用列举法解决问题。还引导学生用集合图来表示答案,从而渗透了集合思想,为后续的学习奠定感性认识。
二、关注学生探究活动的空间,将自主探究活动贯彻始终。在教学中,教师为学生创设了三次自主探究的机会。即一在情境中通过动手操作认识公因数,二用集合图表示因数之间的关系,三用自己的方法求出两个数的最大公因数。在这几次的探究活动中,教师始终积极地调动学生的情感,启发他们主动参与,引导学生感知、理解,从而在脑中形成系统的知识体系。
本节课是教学运用最大公因数的有关知识来解决生活中的实际问题。通过创设生活情境,让学生借助学具摆一摆,算一算或在纸上用彩笔画一画的方法把出现的几种情况记录下来,既提高学生的学习积极性,也让学生体会到新知与生活的密切联系。同时,通过引导学生自主探索、组织交流并验证结论,让学生体会获得成功的喜悦,更加积极地探索新知,掌握所学知识。
本节课的不足之处在于练习部分时间过于仓促,没有足够的时间让学生交流与理解,部分学困生掌握不够到位。这需要教师在今后教堂中合理安排时间,避免时间过于紧迫。
【《找最大公因数》教学反思(精选5篇)】
找最大公因数微课篇十一
教学内容:
课本 p79~81 例 1、例 2。
教学目标:
1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。
2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。
3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。
教学重点:
理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。
教学难点:
了解求两个数的最大公因数的计算原理。
教学用具:
自制课件。
教学过程:
一、复习导入
1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有 16 人,二排有 12 人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?
2.叙述:同学们学以致用的能力还真是很强,知道会用因数的知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片
[从学生的实际生活引入,可以激发学生的学习兴趣。]
二、探索新知
1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。
2.探究方法。
同学们先独立思考,再小组交流、讨论。
3.全班交流。
(1)说一说你是怎样安排的?
(2)为什么找 16 和 12 公有的因数就可以?出示动画9、找16和12公因数的动画
4.思考:像 1、2、4 这样,既是 16 的因数,又是 12 的因数,这样的数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?
过渡语:今天我们就重点来研究最大公因数。
5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?
6.说一说:最大公因数和公因数有什么关系呢?
7.试一试:你能找到 18 和 24 的公因数和最大公因数吗?
8.练习:口答最大公因数。
4 和6 24和8 5和7 6和11
问:你是怎样答出的?能说一说过程吗?
9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?
分解质因数法。
10.练习:求 24 和 36 的最大公因数(用喜欢的方法求)。
[在学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程中, 培养了学生的观察、比较、分析和概括的能力。]
三、巩固练习
1.选两个数求最大公因数
12 和 18
99 和 132
24 和 30
39 和 65
找最大公因数微课篇十二
(1)a=2×2×5×7
b=2×3×7
(a,b)=?
(2)甲数=a×b×c
乙数=d×e×f
(甲数,乙数)=?
3.反馈练习。
(1)直接写出下面各组数的最大公因数。
(27、9)(17、51)(13、39)((3、8)
(13、11)(15、16)(4、6)(6、8)
(8、24)(15、30)(16、48)(5、11)
(11、12)(13、17)
(2)填空。
小于10的最大偶数与最小合数的最大公因数是( )。
小于10的最大奇数与奇数中最小的质数的最大公因数是( )。
最小的质数与最小的合数的最大公因数是( )。
自然数中最小的两个质数的最大公因数是( )。
小于10的最大两个合数的最大公因数是( )。
甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是( ),乙数是( )。
四、全课总结
你对今天的课有什么评价?谈谈你的感想好吗?
板书设计:
找最大公因数微课篇十三
教学内容:
课本 p79~81 例 1、例 2。
教学目标:
1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。
2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。
3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。
教学重点:
理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。
教学难点:
了解求两个数的最大公因数的计算原理。
教学用具:
自制课件。
教学过程:
一、复习导入
1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有 16 人,二排有 12 人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?
2.叙述:同学们学以致用的能力还真是很强,知道会用因数的知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片
[从学生的实际生活引入,可以激发学生的学习兴趣。]
二、探索新知
1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。
2.探究方法。
同学们先独立思考,再小组交流、讨论。
3.全班交流。
(1)说一说你是怎样安排的?
(2)为什么找 16 和 12 公有的因数就可以?出示动画9、找16和12公因数的动画
4.思考:像 1、2、4 这样,既是 16 的因数,又是 12 的因数,这样的数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?
过渡语:今天我们就重点来研究最大公因数。
5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?
6.说一说:最大公因数和公因数有什么关系呢?
7.试一试:你能找到 18 和 24 的公因数和最大公因数吗?
8.练习:口答最大公因数。
4 和6 24和8 5和7 6和11
问:你是怎样答出的?能说一说过程吗?
9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?
分解质因数法。
10.练习:求 24 和 36 的最大公因数(用喜欢的方法求)。
[在学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程中, 培养了学生的观察、比较、分析和概括的能力。]
三、巩固练习
1.选两个数求最大公因数
12 和 18
99 和 132
24 和 30
39 和 65
2.找最大公因数。
(1)a=2×2×5×7
b=2×3×7
(a,b)=?
(2)甲数=a×b×c
乙数=d×e×f
(甲数,乙数)=?
3.反馈练习。
(1)直接写出下面各组数的最大公因数。
(27、9)(17、51)(13、39)((3、8)
(13、11)(15、16)(4、6)(6、8)
(8、24)(15、30)(16、48)(5、11)
(11、12)(13、17)
(2)填空。
小于10的最大偶数与最小合数的最大公因数是( )。
小于10的最大奇数与奇数中最小的质数的最大公因数是( )。
最小的质数与最小的合数的最大公因数是( )。
自然数中最小的两个质数的最大公因数是( )。
小于10的最大两个合数的最大公因数是( )。
甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是( ),乙数是( )。
四、全课总结
你对今天的课有什么评价?谈谈你的感想好吗?
板书设计:
最大公因数
16 的因数:1,2,4,8,16
12 的因数:1,2,3,4,6,12
16=2 × 2 × 2 ×2 18= 2 ×3×3
12=2 × 2 × 3 24= 2 ×2×2×3
(16,12)=2 × 2=4 (18,24)=2×3=6
找最大公因数微课篇十四
聆听了李晶老师执教的人教版五年级下册《最大公因数》一课,我颇受感触,现在说说自己粗浅的认识:
本节课是在学生掌握了因数、倍数的基础上进行的教学,通过找公因数的过程,让学生懂得找公因数的基本方法。这节课与传统的概念教学相比,有所创新、有所突破,变教学生学会知识为指导学生会学知识;变重视结论的记忆力为重视学生获取结论时的体验和感悟;变模仿的学习为探究式的学习。
一、生活实际 ;导入新课
李老师利用身边的数学帮李叔叔铺瓷砖很自然的引入新知教学,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的长方形。再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程。
二、发挥学生的主体;自主探究
教学新知识时,李老师并没有直接讲授内容,教师抛出问题后而是让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“12和18的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
三、及时练习;加深理解
习题设计精简,并很有针对性引入了最大公因数的求法,帮助学生更好的理解并掌握了本节课的重难点。对练习的设计层次清楚,照顾到全班不同层次学生的需要。本节课是非常成功的。
总之,通过听这节课还是有很大的收获的,特别是对我以后在教学最大公因数更是有借鉴的价值,所以非常感谢李老师给我们上的这宝贵的一课。同时也深刻体会到了自己的一些不足,今后的教学中我会努力学习。
找最大公因数微课篇十五
数学《找最大公因数》说课稿
一、说教材:
教材的地位及其作用
学习本课之前,本册教材已经安排了认识因数和找一个数的所有因数,这些内容与本节课紧密相联,是学习本课的铺垫和基础。同时,找最大公因数又是约分的基础,而约分又是分数四则运算的重要基础,因此,理解和掌握最大公因数就显得尤为重要。由此可见,本课在分数运算中起着承前启后、举足轻重的作用。
教材编写者编写本节课时,贯彻数学课程标准(版)的理念,非常注意促使学生经历观察、操作、比较、讨论、归纳等学习活动,在“找最大公因数”的过程中发展抽象概括的能力,培养学生的实践能力和创新意识,帮助学生实现可持续发展发挥。
这里分析本节课在教材中的地位和作用,同时也是我们确定教学目标和教学重点的一项重要依据。
学情分析:
学习本课之前,五年级学生已经认识了倍数和因数,能找出100以内某个自然数的所有因数;积累了一定的观察、操作、归纳等数学活动经验,具备了初步的抽象概括能力。但是,这个年龄阶段的学生处于从具体的形象思维向抽象逻辑思维过渡的阶段,他们的数学学习一个重要特点是:探索发现和抽象概括的过程中需要具体的、形象的数学例证作支撑;同时他们在进行数学概括时往往不够完整,在数学表达上往往不够严谨,这些都需要精心的引导。
以上学情,是我们确定教学目标和教学重点、难点以及确定教法、学法的一项重要依据。
教学目标:
1、在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2、渗透集合思想,体验解决问题策略的多样性。
3、培养学生分析、归纳等思维能力,激发学生自主学习、积极探索的热情,培养合作交流的良好习惯。
教学重、难点:
教学重点:能理解公因数和最大公因数的意义,探索找公因数的方法。
教学难点:能正确找出两个数的公因数与最大公因数。
教材处理:
教材首先呈现了找公因数的一般方法:先用想乘法算式的方式分别找12和18的因数,再让学生将这些因数填入两个相交的集合圈中,引导学生重点思考的问题是:两个集合相交的部分填哪些因数?在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现思路,让学生经历知识的形成过程,引发学生的数学思考。
教材在练一练中,呈现了两组找因数、公因数和最大公因数的练习,一组是8和16,另一组是5和7。第一组是两个数存在倍数关系找最大公因数;第二组是找互质数的最大公因数。我在教学这两种特殊情况时,给出更多的数字,安排了三对数,第一组4和8,16和32,6和24,每对都存在倍数关系,先让学生找一找公因数和最大公因数,然后观察最大公因数,发现每组的最大公因规律。第二组安排了三对数3和7,8和9,15和16,都存在互质的关系,也先让学生找一找公因数和最大公因数,然后观察、发现每组的最大公因数都是1,然后现去想一想,每组数都有些什么特点,从而概括这两种特殊情况组找最大公因数的方法。
二、说方法
教法、学法选择:
依据《数学课程标准(版)》,数学教学活动要注重把四基目标有机结合,整体实现;要重视学生在学习活动中的主体地位,我对本节课主要选用了探究性学习方式。同样的,依据《数学课程标准(2011版)》,为了使学生主体地位和教师的主导作用达到和谐统一,我还选用了启发式的教学方式。
教学手段:
我使用了现代信息技术,以手段多样化,促进学生的探索研究。主要使用了四种教学手段:
1、学具操作:合理的使用学具能促进学生的亲身经历与体验,帮助学习建立数学建模。
2、白板运用:恰当的演示,给课堂带来清晰的层次感,体现教师的主导作用和引导方式。强大的.电子白板可以更好的辅助教师和学生之间的互动。
3、实物展示台:有利于反馈的时效性,使反馈的受益面更大,让个别学生生成有代表性、典型意义的学习资源面向全体
4、课堂板书:必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。
三、说过程
一、复习导入。(复习找因数的方法)
回忆旧知识,又是为向新知识的延升做好铺垫。
让学生找出12的所有因数。并说说是怎样找的?找因数的时候需要注意些什么?
(白板上出示1、2、3、4、5、6、7、8、9、10、12、15、18、20数字和集合圈1)
让学生将12的因数拖入集合圈中,回忆找因数的方法。怎么找因数才能又快又有顺序?
用乘法算式,有序、不易遗漏
二、探究
探究1:认识公因数。
再找一找18的所有因数,并出示集合圈2,让学生将18的所有因数拖入集合圈2中。
9、18
学生可能会拖入9、18,还有其它的因数?能不能想想办法,用两个集合圈,即能表示12的所有因数,又能表示18的所有因数?
移动集合圈。展示交集动态的过程。
师:左边的集合圈填的是什么?(12的因数)右边的集合圈填的是什么?(18的因数)中间的圈里是?(即是12的因数也是18的因数)。
那我们可以给他取个名字?(公因数)
我们可以将4放到中间的集合圈中吗?为什么?
根据学生的回答,小结:即是12的因数也是18的因数,我们就称他为12和18的公因数。
巩固练习。
你学会了找两个数的公因数了吗?试一试吧。
找6和9的公因数 找30和45的公因数
探究2:认识最大公因数和最小公因数
如果请你找出12和18的最大公因数,你会觉得是哪一个数字呢?
巩固练习。
在前次练习的基础上,找6和9;30和45的最大公因数。
我们学会了找最大公因数,那同学们能找出这三组数的最小公因数吗?你有什么发现?
所有数的最小公因数都是“1”。
探究3:找特殊数组的最大公因数。
找出下面每组数的最大公因数。
1、4和8 16和32 6和24
2、3和7 8和9 15和16
做完后分小组相互交流,从中你能发现些什么?
每组的两个数有些什么特点,和他们的最大公因数有什么关系?是不是有这些特点的两个数,它们的最大公因数都有这些规律呢?分小组验证。
反馈得出结论:两个数是倍数关系的,较大的数是两个数的最大公因数。
两个数只有公因数1时,他们的最大公因数为1。
三、练习反馈:
有两根小棒,长分别是12厘米,18厘米,要把它们截成同样长的小棒,不许剩余,每根小棒最长有多少厘米?
师:看到这个问题,你会怎么想?这里有几个关键字:同样长,不许有剩余,最长多少?遇到这样的问题其实是让我们求什么呢?
四、归纳总结
1、这节课我们学到了那些知识?
2、我们是运用什么方法获得这些知识的?
(不但让学生谈知识技能方面的收获,还着重让学生谈谈了学习方法、情感态度方面的收获,再一次激起良好的情绪体验。)
找最大公因数微课篇十六
教学目标:
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
2、探索找两个数的公因数的方法,会正确找出两个数的公因数和最大公因数。
基本教学过程:
一、创设活动情境,进行找因数活动:
1、用乘法算式的方式分别找12和18的因数,
2、用集合的方式找出12和18的因数,分别填在各自的圈中。
3、同位交流找因数的方法。
二、自主探索,总结找两个数的公因数的方法:
1、交流方法
2、激趣导思
①小组讨论:
两个集合相交的部分填那些因数?
②小组汇报:
③师总结:揭示公因数和最大公因数的概念。
这两个集合相交的部分填的这些因数就是12和18的公因数,其中最大的一个就是它们的最大公因数。
④还有其他方法吗?
小组讨论:
小组汇报:
⑤总结找两个数公因数的方法
3、拓展引思:
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
教学反思:
找最大公因数微课篇十七
一、教材分析
本节课的内容是北师大版五年级上册第三单元《分数》中《找最大公因数》 。教材中直接呈现了找公因数的一般方法:先分别找 12 和 18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数。教材用集合的方式呈现探索的过程。本节课,为学习约分奠定基础。
二、教学目标
1 、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
2 、探索找两个数的公因数的方法,会正确找出两个数的公因数和最
大公因数。
三、教学重、难点
新课标鼓励学生通过思考、讨论、和交流,经历探索的过程,因此,确定教学重、难点为“探索找两个数的公因数的方法,会正确找出两个数的公因数和最大公因数。”
四、教法与学法
《数学课程标准》中指出:有效的教学活动不能单纯地依靠模仿与记忆,自主探索与合作交流是学习数学的重要方式。本节课在教学中主要采用了探究发现法、讨论归纳法,调动了学生高涨的学习情趣,从中发现、提出并解决问题,互相合作、归纳总结了找最大公因数的方法,从而获得了探索的乐趣和成功的体验。
五、教学理念及教学手段
本学段的学生的生活经验和知识背景相对第一学段而言更为丰富,解决问题的欲望更为强烈。因此我在教学中激活了学生先前的经验,创设了问题情境。让学生在经历体验、探索中去归纳、总结找最大公因数的方法,体现了学生的主体地位和教师的主导作用。
六、评价方式
在本节课中我主要运用了激励性语言“你真了不起,你太厉害了,及你来当老师等对学生进行评价,以此来调动学生的学习积极性,让它们体验到成功的喜悦,加强学习的自信心,变“要我学”为“我要学”。
七、教学流程设计
《课程标准》强调从学生的生活经验和已有的知识出发,让学生亲身经历自主探索、合作交流、归纳总结的过程根据这一认识,设计了如下教学环节。
(一)、复习导入、学习新知
因为学生已经能很熟练的找出一个数的因数,因此我利用学生已有的知识经验进行导入学习新知。
(二)、尝试练习,合作探究、总结方法
先让学生自主探索发现,通过比比谁最棒,先自己找出12和18的因数,他们的公因数是哪几个公因数中最大的一个是多少。然后出示集合图,让学生明确公因数和最大公因数的意义。让学生总结出用列举法求最大公因数的方法。
接着通过填一填让学生自主探索总结出两个数是倍数关系时,较小的数是它们的最大公因数。通过快速反应让学生找出互质关系的两个数的最大公因数是1,并让学生小组探究什么样的两个数为互质数。
(三)、巩固练习、体验成功
让学生积极汇报自己掌握的方法很快求出每组数的最大公因数。并能把它们分类。巩固所学知识。
在教学中能为学生创设这样一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极的参与数学活动,体验了成功的快乐和喜悦,提高了自已的判断能力。
(四)、课堂小结
通过学习,让学生自己总结、归纳本节课的收获,学生们有的说学会了怎样找最大公因数,有的说我总结出了找最大公因数的方法。学生们能用自已的语言非常清晰的总结出自已的收获,提高了学生归纳、总结能力和语言表达能力。
(五)能力提高
通过解决实际问题,了解公因数和最大公因数在现实生活中的应用。