作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。既然教案这么重要,那到底该怎么写一篇优质的教案呢?这里我给大家分享一些最新的教案范文,方便大家学习。
人教版七年级下册数学第一章教案 七年级下册数学第一章小结篇一
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程
一、复习
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间 速度=路程 / 时间
二、新授
例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?
画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。
三、巩固练习
教科书第17页练习1、2。
四、小结
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
四、作业
教科书习题6.3.2,第1至5题。
第四课时
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点、难点
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
教学过程
一、复习提问
1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全
部工作量的多少?
2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成
全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授
阅读教科书第18页中的问题6。
分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)
[先要求出师傅与徒弟各完成的工作量是多少?]
两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2
师傅完成的工作量为= ,徒弟完成的工作量为=
所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现
由甲独做10小时;
请你提出问题,并加以解答。
例如 (1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之
间的关系,即 工作量=工作效率×工作时间
工作效率= 工作时间=
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业
教科书习题6.3.3第1、2题。
人教版七年级下册数学第一章教案 七年级下册数学第一章小结篇二
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标 、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展“用数学”的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。
2、就第一章而言, 多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标 、重点和难点。
新课程标准是我们确定教学目标 ,重点和难点的依据。重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于 ,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
二、教材处理
本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程 的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程 中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程 中在掌握知识同时、发展智力、受到教育。
四、教学过程 的设计。
1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。
3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。
4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标 :
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
(1)多项式除以单项式的法则及其应用.
(2)理解法则导出的根据。
课时安排: 一课时.
教具学具: 多媒体课件.
授课人及时间:关龙 二〇〇七年三月二十九日
教学过程 :
1.复习导入
(l)单项式除以单项式法则是什么?
(2)计算:
1)–12a5b3c÷(–4a2b)=
2)(–5a2b)2÷5a3b2 =
3)4(a+b)7 ÷ (a+b)3 =
4)(–3ab2c)3÷(–3ab2c)2 =
找规律:怎样寻找多项式除以单项式的法则?
尝试练习引入分析
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.例题解析
例3 计算:见课本p49
(1) 尝试练习
(2) 提问:哪个等号是用到了法则?
(3) 在计算多项式除以单项式时,要注意什么?
注意:(l)先定商的符号;
(2)注意把除式(¸后的式子)添括号;
要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
练习设计:
(1)随堂练习p50
(2)联系拓广p51
3.小结
你在本节课学到了什么?
(1)单项式除以单项式的法则
(2)多项式除以单项式的法则
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
p50 知识技能
5.综合练习(课件)
人教版七年级下册数学第一章教案 七年级下册数学第一章小结篇三
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1.重点:通过分析图形问题中的数量关系,建立方程解决问题。
2.难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1.列一元一次方程解应用题的步骤是什么?
2.长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题6.3.1第1、2、3。
人教版七年级下册数学第一章教案 七年级下册数学第一章小结篇四
教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点
1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2.商品利润等有关知识。
利润=售价-成本 ; =商品利润率
二、新授
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
利息-利息税=48.6
可设小明爸爸前年存了x元,那么二年后共得利息为
2.43%×x×2,利息税为2.43%x×2×20%
根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%-x
由等量关系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服装的成本是125元。
三、巩固练习
教科书第15页,练习1、2。
四、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
五、作业
教科书第16页,习题6.3.1,第4、5题。
人教版七年级下册数学第一章教案 七年级下册数学第一章小结篇五
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程(师生活动) 设计理念
探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
1, 必做题:教科书第18页习题1.2第1题
2, 教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。