当前位置:网站首页 >> 作文 >> 高一数学理科知识点总结人教版 高一数学知识点总结及公式(3篇)

高一数学理科知识点总结人教版 高一数学知识点总结及公式(3篇)

格式:DOC 上传日期:2023-03-28 13:13:34
高一数学理科知识点总结人教版 高一数学知识点总结及公式(3篇)
时间:2023-03-28 13:13:34     小编:zdfb

总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中可以改进提高,趋利避害,避免失误。写总结的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的个人今后的总结范文,欢迎阅读分享,希望对大家有所帮助。

高一数学理科知识点总结人教版 高一数学知识点总结及公式篇一

(2)算法的特点:

①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决。

高一数学理科知识点总结人教版 高一数学知识点总结及公式篇二

幂函数的性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数x。

解题方法:换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

练习题:

1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).

(1)求f(log2x)的最小值及对应的x值;

(2)x取何值时,f(log2x)>f(1)且log2[f(x)]

2、已知函数f(x)=3x+k(k为常数),a(-2k,2)是函数y=f-1(x)图象上的点

(1)求实数k的值及函数f-1(x)的解析式;

(2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求实数m的取值范围.

高一数学理科知识点总结人教版 高一数学知识点总结及公式篇三

一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;

而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;

比如用数轴来表示集合,或是集合的`元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服