总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中可以改进提高,趋利避害,避免失误。优秀的总结都具备一些什么特点呢?又该怎么写呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。
高一数学知识点提纲 高一数学知识点总结篇一
在日复一日的学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点是指某个模块知识的重点、核心内容、关键部分。相信很多人都在为知识点发愁,下面是小编整理的高一数学知识点提纲,欢迎大家分享。
集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:a={我校的篮球队员}b={12345}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:n
正整数集n_或n+整数集z有理数集q实数集r
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a:a
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x—3>2的解集是{x?r|x—3>2}或{x|x—3>2}
4、集合的分类:
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合
3.空集不含任何元素的集合例:{x|x2=—5}
集合间的基本关系
1.“包含”关系子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之:集合a不包含于集合b或集合b不包含集合a记作ab或ba
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设a={x|x2—1=0}b={—11}“元素相同”
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
①任何一个集合是它本身的子集。a?a
②真子集:如果a?b且a?b那就说集合a是集合b的真子集,记作ab(或ba)
③如果a?bb?c那么a?c
④如果a?b同时b?a那么a=b
3.不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的.增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限
四、确定一次函数的表达式:
已知点a(x1,y1);b(x2,y2),请确定过点a、b的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点p(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量s。g=s—ft。
六、常用公式:
1.求函数图像的k值:(y1—y2)/(x1—x2)
2.求与x轴平行线段的中点:|x1—x2|/2
3.求与y轴平行线段的中点:|y1—y2|/2
4.求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的平方和)
映射的概念
1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多
2.映射:设a和b是两个非空集合,如果按照某种对应关系f,对于集合a中的任意一个元素x,在集合b中都存在的一个元素y与之对应,那么,就称对应f:a→b为集合a到集合b的一个映射(mapping)。映射是特殊的对应,简称“对一”的对应。包括:一对一多对一。
1、计定数量。
《荀子·正名》:此事之所以稽实定数也。
2、气数。与变数相连,数理学家认为国家的兴亡、人世的祸福皆由天命或某种不可知的力量所决定,因称为“定数。
南朝梁刘孝标《辩命论》:”宁前愚而后智,先非而终是?将荣悴有定数,天命有至极而谬生妍蚩?
3、定则;定理。
严复《自序》:内籀云者,察其曲而知其全者也,执其微以会其通者也;外籀云者,据公理以断众事者也,设定数以逆未然者也。
1、在计算中,代入数值后,要适当添上括号,如把负数、分数、幂、根式看作一个整体括起来,即见负必括、见分必括、见幂必括、见根必括,否则,会发生计算错误。此规则在列式中类同。
2、在解方程中,遇到去分母的情况,如果分子是一个多项式,应该看作一个整体,在去分母时,应将它加上括号;分母有理化时,有理化因式如果是一个多项式,应看作一个整体括起来,即见多必括。
3、用分配律和去括号法则、添括号法则时,要正确使用,用分配律时千万勿漏乘某一项,即见律勿漏。
4、注意去、添括号时不要改变式子的值,即注意恒等。
s("content_relate");【高一数学知识点提纲】相关文章:
数学复数知识点提纲
01-21
数学旋转的知识点提纲08-27
数学必修五数列知识点提纲10-15
数学必修三统计知识点提纲12-10
数学基本不等式知识点提纲10-15
数学高一函数知识点整理02-22
高一数学下册知识点01-27
高一数学知识点08-08
数学八年级知识点提纲08-29