无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
平行四边形的面积教学反思篇一
在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。
在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。
数学教学的核心是促进学生思维的.发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。
动手实践,自主探索与合作交流是学生学习数学的重要方式。教学中,我为学生创设了民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,充分地调动了学生的学习主动性。让每一个学生亲自动手操作,边操作边观察边思考,在自主探究与合作交流过程中,经历知识的形成。课堂上,学生们乐想、善思、敢说,他们自由地思考、猜想、实践、推理、验证……
教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思篇二
心理学研究证明,学习材料与学生的生活经验相联系时,学生对学习最感兴趣,会觉得资料亲切,易于理解和理解。创设情境,将静态的生活资源加工成动态的数学学习资源,让学生感受到熟悉的活动情境蕴含着许多奇妙的数学知识。数学是从现实生活中抽象出来的,生活中处处有数学,把熟悉的生活事例引入数学课堂,使数学资料具有丰富的现实背景。本节课,精心创设情境,沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体,既让学生对数学倍感亲切,又利于学生理解数学,热爱数学,设定恰当的生活情境和利用真实的生活原型展开数学活动,充分体现了数学与现实世界的密切联系,更重要的是,能让学生学习富于真情实感的,能动的,由活力的知识,使学生的情感世界获得实质性的发展,提升。
为学生营造宽松、民主、和谐的学习氛围,源于教师对学生真挚的爱。在教学中,我关注、激发、保护、帮忙、鼓励学生,使学生敢想、敢说、敢做、敢真实地表现自我,让学生的潜能和主体作用得以充分发挥。创设良好的氛围,使每个学生都有展示自我的机会,都敢于发表自我的见解,培养学生善于倾听,善于欣赏他人的良好品质。
鼓励学生大胆猜想,调动学生的思维,培养学生的创造本事。再教学伊始,就让学生大胆猜测,平行四边形的面积可能怎样计算?由于受长方形,正方形面积计算方法的影响,有学生说是底乘高;也有学生受知识的负迁移,说是邻边相乘。两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。鼓励孩子们大胆猜测,有利于孩子们在今后的学习中愿意把自我的原始思维状态表现出来,这是一笔有价值的学习资源。
苏霍姆林斯基曾说过:手是意识的培育者,又是智慧的创造着。操作实践能够让每个孩子既动脑、动眼又动手,调动各种感官参与学习,积累感性认识,深化理性认识。既能够培养学生的操作本事,发展学生的智力,又能培养学生的探索精神和求实的科学态度。在本节课的教学中,让学生思考,讨论,平行四边形的面积能够怎样计算?当学生认为能将平行四边形转化为长方形时,让学生按照自我的设想动手操作使学生的知识,经验智慧充分发挥作用,经过剪拼,然后让学生交流各自的剪拼方法,结果学生想出了三种剪拼的方法,然后引导学生比较转化前后的图形探究出平行四边形的面积计算公式。每个学生经过操作活动,经历知识的再创造的过程,获得数学知识,学得主动,让学生在获取知识的过程中获得学习数学的方法,获得探索数学知识的体验,获得多种本事的提高、
学生的数学学习过程中,交流是不可或缺的,交流能够帮忙学生在非正式的直觉的观念与抽象的数学语言、符号之间建立起联系,交流能够加深学生对数学概念和原理的理解,教学中,我选择适当的时机组织交流,供给具体的情境让学生去表达、倾听,在与他人交流中展示自我的原始策略,了解同伴的学习策略,发展自我的学习策略;在与他人的交流中开阔眼界,丰富自我的知识,完善自我的想法或认识。
平行四边形的面积教学反思篇三
《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的.,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。
3、比较等底等高的平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底x高得出面积。
4、补充其他转化策略,明确平行四边形面积=底x高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。
平行四边形的面积教学反思篇四
平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:
在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。
本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的`情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。
学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。
平行四边形的面积教学反思篇五
开学初,就被告知新老师要上汇报课,作为一个教书“小白”,顿时觉得有一丝紧张。估摸着应该在期中考试前,于是选了第四单元的内容。后来时间调整,重新选了《平行四边形的面积》这一课。
这节课是在学生已经掌握了长方形面积的计算公式和平行四边形特征的基础上进行学习的,由数格子的方法切入,我根据学生已有的知识水平和认知规律进行教学,现针对教学设计思路和实际课堂教学效果进行自我反思。
1、数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。学生积极主动地投入到数学活动中去。创设了学生熟悉的生活情境,学生也体会到了计算它的面积的用处,激发起学生的求知欲望。
2、动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,填写表格,观察表格数据后引出平行四边形面积的猜想。接着是读操作要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的.时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,并经历了知识的形成过程。
3、拓展方法,渗透数学思想。在教学时,以学生的验证推导为主,学生在之前大胆猜测的基础上,加上适时引导,学生自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。通过剪一剪,拼一拼,学生探究出了将平行四边形转化成长方形的方法,并通过操作加以演示推导。
4、练习设计的优化是优化教学过程的一个重要方面。本课教学练习题中,第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,让学生判断计算是否正确,从而强调底和高必须对应,学习上更上一个层次。
结合实际效果,自我总结本节课的不足之处有:(1)转化思想渗透不够,平行四边形的面积计算公式是学生动手操作转化为长方形从而推导出来的,这一过程当中,应将“转化”这一数学思想渗透。而在实际教学中,转化思想没有突出,渗透不够。(2)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法。后两种方法只是教师讲解、演示给学生看。(3)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。(4)时间把握得不好,对知识的巩固运用做的不够,本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力,由于对时间把握不够,在课件中删除了这道题。
经验+反思=成长,是学者波斯纳提出的一个教师成长的公式,它清楚地揭示了反思在教师专业成长中的重要意义。因此,在以后的教学中,还需多反思。
平行四边形的面积教学反思篇六
本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的.面积计算公式。
2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
加强学生的语言表述能力,做到规范、严谨。
平行四边形的面积教学反思篇七
本节课资料是在学生已经学会长方形、正方形的面积计算的基础上掌握平行四边形的特征,并认识平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
心理学家皮亚杰指出:活动是认知的基础,智慧从动作开始。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,经过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习进取性。经过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、教师为主导的教学思想。
经过本节课的学习,要能够为推导三角形、梯形面积的计算公式供给方法迁移。转化是数学学习和研究的一种重要思想方法。
我在教学本节课时采用了转化的思想,先经过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,之后引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想方法,充分发挥学生的想象力,培养了创新意识。
之后,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自我操作转化推导的过程叙述出来,以发展学生思维和表达本事。
这样教学对于培养学生的空间观念,发展解决生活中实际问题的.本事都有重要作用。
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否到达运用公式,解决实际问题。
第二题出示包含剩余条件的图形题,强调底和高必须对应,学习上更上一个层次。
第三题考察学生灵活运用公式求平行四边形的底和高。
第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
平行四边形的面积教学反思篇八
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
平行四边形的面积教学反思篇九
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个平行四边形的面积吗?
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
平行四边形的面积教学反思篇十
在教学完这节课后,听课老师对本节课进行了评价,结合自身的体会,作如下反思:
1、以数格子和财主分地的故事导入新知识的学习,激发学习兴趣。这个年龄的学生都喜欢听故事,我在课前用童话故事引出要讲的新内容,把学生的注意力一下子吸引过来,增强了学习新知识的兴趣。
2、在本节课的教学中,我先出示一个长方形,让学生说出它的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,再出示一个平行四边形让学生算出它的面积,这个问题很快激起学生的探究欲望,为下面要探讨的平行四边形面积公式的推导做好铺垫。
3、动手操作,自主探索,体验成功。
小组讨论怎么把平行四边形转化成学过的图形,并在小组讨论中得出平行四边形的底与长方形的长、平行四边形的高与长方形的宽以及两者面积之间的关系,并从长方形的面积公式推导出平行四边形的面积的计算公式,培养了学生迁移的能力,学生从中体验了探索成功的乐趣。
4、体现学生的主体地位,改变以往的“以教师为中心”的教学方式。在推导平行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。
5、纠正错误时注意面向全体。
练习中,学生计算平行四边形的面积,我发现一生用错单位了,一生算面积用底乘高不是底边上的高。在黑板上给他们指了出来。并把他的错误在班上强调,鼓励孩子们做个细心的孩子,效果很好。
6、课堂教学中,“放”的力度不够。
针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。