在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
正方体教学设计人教版篇一
长方体和正方体的认识
(一)掌握长方体和正方体的特征,认识它们之间的关系。
(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 教学重点和难点
(一)长方体和正方体的特征。
(二)认识立体图形,发展学生初步的空间观念。 教具准备
长方体框架、长方体、正方体、圆柱、墨水瓶盒等,课件 学具:长方体和正方体纸盒。
四、教学过程
(一)复习准备
同学们,我们一起来回忆一下以前学过什么图形?谁来说说 (学生说)
不错,那谁来说以说它们当中哪些图形是平面图形?哪些是立体图形?(边叙述,边出示幻灯片)
今天我们就来进一步认识这些图形中的两个——长方体和正方体 (板书:长方体和正方体)
(二)新授
1、老师今天带来了长方体(展示长方体)和正方体(展示正方体)。 2、还记得我们以前认识图形的一些方法吗?谁愿意来给老师说说? (学生说:摸一摸,看一看,比一比,量一量,数一数 ……)
我们今天进一步认识长方体和正方体,老师要看一下你们都用了哪些方法?
现在请仔细观察你的长方体和正方体,想一想,它是由哪些部分组成的?我请......
(学生说)
3、说的真好,长方体和正方体都是由面、棱、顶点三个部分组成的,那谁来指指长方体的.面是哪一个部分?
(请一个学生上台来说)
拿出你们的长方体和正方体摸摸看。 谁来指指长方体的棱是哪一个部分? (请一个学生上台来说)
拿出你们的长方体和正方体摸摸看。
那长方体或正方体的顶点又是指哪一个部分?请同桌互相指指看看。 (同桌互相指顶点) (课件出示)
数学上我们把长方体或正方体平平的部分叫做面,把两个面相交的线段叫做棱,我们把三条棱相交的点叫做顶点
今天我们就从面、棱、顶点三个方面来研究长方体和正方体 首先研究长方体,我们一起来读一下讨论要求。 (学生读要求)
现在每排的4个同学为一个小组,分组讨论,并将讨论的结果填写在老师发放的表格中。
正方体教学设计人教版篇二
1、根据正方体特征,理解并掌握正方体表面积的计算方法。
2、能应用所学的知识灵活解决生活中的一些实际问题。
3、体会所学知识与现实的联系,培养学生的应用意识。
正方体表面积的计算方法。
学生准备:一个长方体和正方体实物。
一、预习提纲:
1、仔细读p35的例2
二、创设情境,自主探索。
以小组为单位自学、研究。
三、汇报交流,展示成果。
1、①要求包装这个礼品盒至少用多少平方分米的包装纸,实际是求什么?
②正方体的6个面有什么特征?
③怎样求正方体的表面积呢?
1.2×1.2×6
=1.44×6
=8.64(dm )
答:包装这个礼品盒至少要用8.64 dm 包装纸。
2.练习:完成p35“做一做”
分析题目的已知条件和问题,鱼缸有什么特征?学生解答
3×3×5
=9×5
=45(dm )
3.表面积计算中的实际问题:
(1)实际生产和生活中,有时要根据实际需要计算长方体或正方体中某几个面的面积之和。所以在求表面积时,要联系实际生活。如:油箱、罐头等都是6个面,游泳池、鱼缸等都是5个面,而水管、烟窗等都是4个面。
(2)判断:下面各种计算应该考虑几个面。
①制作一个无盖的铁皮水桶
②粉刷教室四面墙壁和顶棚
③给长方体罐头盒的4壁贴上一圈商标纸
④给会客厅的大立柱刷油漆
⑤给水池抹水泥
四、课堂总结、评价:今天的学习,我学会了: 我在 方面的表现很好,在 方面表现不够,以后要注意的是: 。总体表现(优、良、差),愉悦指数(高兴、一般、痛苦)
四、课堂反馈:
1.一个正方体木箱,棱长5dm,在它的表面涂漆,涂漆的面积是多少?如果每平方分米用油漆8克,涂这个木箱要用油漆多少克?
2.用一根长72cm的铁丝做一个尽可能大的正方体框架,然后在它的'表面糊纸,至少要用多少纸?
3.一个长方形的抽屉,它的长宽高分别是50cm、40cm、32cm,做3个这样的抽屉至少需要多大面积的木板?
正方体表面积的计算
例2 1.2×1.2×6
=1.44×6
=8.64(dm )
答:包装这个礼品盒至少要用8.64 dm 包装纸。
课后反思:正方体是特殊的长方体,所以其表面积公式的推导及灵活应用对学生而言都相对容易理解掌握。因此,在教学中,我灵活调整了练习重心,重点指导学生解决实际生活中有关长方体表面积的计算问题,培养思维的灵活性。在发展学生的空间观念上让学生上一个台阶,由知道长、宽、高就能想像出实物图形,并能根据生活实际确定所缺少的面应该如何求。
正方体教学设计人教版篇三
结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。
知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。
3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
一、复习准备。
(一)口答填空。
1、长方体有( )个面,一般都是( ),相对的面的( )相等;
2、正方体有( )个面,它们都是( ),正方形各面的( )相等;
3、这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
4、这是一个( ),它的棱长是( )厘米,它的`棱长之和是( )厘米。
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)
二、学习新课。
(一)长方体和正方体表面积的意义。
1、教师提问:什么叫做面积?
长方体有几个面?正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2、教师明确:这六个面的总面积叫做它的表面积。
3、学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。
4、教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
(二)长方体表面积的计算方法
1、学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的。
2、教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
3、练习解答。
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4、巩固练习。
一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。
列式:4×3+4×2.5×2+3×2.5×2
(三)正方体表面积的计算方法
1、教师提问:正方体的表面积如何求吗?
学生:棱长×棱长×6
2、试解例2。
一个正方体纸盒,棱长3厘米,求它的表面积。
32×6
=9×6
=54(平方厘米)
答:它的表面积是54平方厘米。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
3、巩固练习:一个正方体的面积是1.2分米,求它的表面积。
三、巩固反馈。
1、一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3、判断正误,并说明理由。
(1)长方体的三条棱分别叫它的长、宽、高。( )
(2)一个棱长4分米的正方体,它的表面积是:42×6=48(平方分米)( )
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小。( )
四、课堂总结。
什么是长、正方体的表面积?长、正方体的表面积如何计算?
正方体教学设计人教版篇四
1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。
3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。
教学重点:掌握长方体和正方体的特征。
教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。
(一)创设情境,导入新课
用多媒体向学生展示一些基本图形长方形、正方形、三角形、平行四边形、梯形,询问学生:“这些图形我们统称为什么形?”在学生回答称为平面图形。
让学生拿出自己准备的盒子,观察之后告诉他们像盒子这样占有一定空间的图形,叫立体图形,今天我们我们来研究立体图形中的长方体和正方体的特征,并板书课题——长方体和正方体的`认识。
(二)探究新知
1、认识长方体的面、棱、顶点。
首先请学生拿出已准备好的长方体(学具),闭上眼睛摸一摸,想一想:“长方体是由什么围成的?两个面相交处有什么?三条棱相交处有什么?”让学生告诉我他们的发现,然后将拿出长方体,边摸
边讲解:什么叫面、棱、顶点。
2、研究汇报长方体、正方体的特征。
请学生用手中的学具四人一小组研究长方体和正方体面、棱、顶点的特征,完成表格。
给出了三组小棒,让学生判断哪组可以组成长方体。 学生汇报正方体的面、棱、顶点的特征。
5、长方体、正方体间的关系。
让学生总结前面讲到的长方体、正方体的特征,并进行对比,说一说它们相同点和不同点。
(三)多种练习,巩固新知。
(四)课堂小节
让学生谈一谈体会,概括本节课所学知识。
正方体教学设计人教版篇五
教学内容:
人教版教材数学五年级下册29页到30页教学目标:
1、探究、推导长方体和正方体体积的计算公式
2、理解掌握并运用长方体和正方体体积公式解决实际问题
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力
教学重点:
理解掌握长方体和正方体体积的计算公式
教学难点:
长方体和正方体体积公式的推导
教具准备:
学生准备小正方体(多个)ppt
教学过程:
1、填空
(1)()叫做物体的体积。
(2)常用的体积单位有()()()
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的`大小取决于这个物体里所含单位体积的多少。
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)
2、出示学习目标:
(1)探究总结长方体和正方体的体积的计算方法
(2)运用长方体和正方体体积的计算公式解决实际问题
1、回顾“以旧学新”的几何问题研究方法
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)
(2)把不同的长方体的相关数据填入下表(29页表格)
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
5、各小组学生合作学习后,让各小组汇报数据,汇总到一起填入表格,观察表格,总结长方体体积公式:长方体体积=长×宽×高用字母表示:v=abh
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)
2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)
这节课你有什么收获?
板书设计:
长方体和正方体体积
长方体体积=长×宽×高
v=abh正方体体积=棱长×棱长×棱长
v=a×a×a=a3
正方体教学设计人教版篇六
教学目标
(一)理解并掌握长方体和正方体体积的计算方法。
(二)能运用长、正方体的体积计算解决一些简单的实际问题。
(三)培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。
学具:1厘米3的立方体20块。
教学过程设计
1.提问:什么是体积?
2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
1.长方体的体积。
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:
教师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?(因为它们都含有同样多的体积单位——12个1厘米3。)
教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?学生讨论后,师生共同归纳:
表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。
同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。
(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。
学生说出摆法和体积后。请看电脑动画图像:一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。
教师板书:
同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。学生操作,看电脑动画图像。
教师板书:
3(厘米)
3(厘米)
2(厘米)
18(厘米3)
教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?
学生口答后,老师用电脑图演示。然后板书:5(厘米)4(厘米)3(厘米)60(厘米3)
教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
学生讨论后回答:长方体的.体积正好等于它的长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:板书:v=abh。
出示投影图:
(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。答:它的体积是84厘米3。练习:(投影出题,学生口答。)一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)
2.正方体体积。
(1)请学生看电脑动画录像:长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?问:这个正方体的体积可以求出来吗?
学生口答,老师板书:3×3×3=27(厘米3)。
投影出一个正方体图。(可以用翻页变换它的棱长。)问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?
学生口答,老师板书:2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。用v表体积,a表示棱长,公式可写成:v=aaa或者v=a3。
(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
学生口答,老师板书:53=5×5×5=125(分米3)。答:体积是125分米3。
做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。
(3)说一说长方体和正方体的体积计算方法和字母公式。教师:请讨论长方体和正方体的体积计算方法相同还是不相同。
学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
1.口答填空。课本p35练习七:2,3。
2.口答填表:
3.判断正误并说明理由。
①0.23= 0.2×0.2×0.2;
②5x2=10x;
③一个正方体棱长4分米,它的体积是:43=12(分米3);
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。
1.长方体的体积计算方法及公式。正方体的体积计算方法及公式。
2.作业:课本p35练习七:4,6。
课堂教学设计说明
本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。新课教学共分两个部分:
第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。
第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。
正方体教学设计人教版篇七
教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的`地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
正方体教学设计人教版篇八
推导长正方体的体积计算方法
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、培养学生空间和空间想象能力。
长正方体体积公式的推导。
教学难点:运用公式计算。
一、出示课题,学习目标
理解长方体和正方体体积公式的推导,能运用公式进行计算。
二、出示自学指导
认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?
三、学生看书,自学
四、效果检测
如何计算长方体的体积?
板书:长方体体积=长×宽×高
字母公式:v=abh
五、练习
1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
正方体体积=棱长×棱长×棱长v=aaa=a3读作a的立方。
2、一块正方体的石料,棱长是6分米,这块石料的`体积是多少立方分米?
请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?
长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?
六、小结:
怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。
正方体教学设计人教版篇九
1、长方体和正方体的认识
2、长方体和正方体的表面积
3、长方体和正方体的体积。
1、通过观察和操作,认识长方体和正方体的特征以及它们的展开图。
2、通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1m3、1dm3、1cm3以及1l、1ml的实际意义。
3、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。
4、探索某些实物体积的测量方法。
1、注意联系生活实际。
(1)结合学生熟悉的事物认识图形和概念。
(2)注意用所学的知识解决实际问题。
(3)选取具有鲜明时代特征的素材。
2、更加重视对概念的理解。
先通过“乌鸦喝水”的.故事,以形象生动的方式,让学生初步感知物体占有空间。然后通过把石头放入有水的玻璃杯里的实验,让学生进一步体验物体确实占有空间,为引出体积概念做充分的感知准备。计算不规则物体的体积,让学生利用已建立的体积概念想到可以用排水法求得不规则物体的体积,加深对体积概念的认识。
3、加强动手实践、自主探索,让学生经历知识的形成过程。
本单元一些概念和计算方法都是通过学生动手操作、自主探索来学习的。如,长方体体积的计算方法,先让学生用1cm3的正方体拼摆出不同的长方体,通过对这些长方体的相关数据的观察、分析和归纳,自己发现长方体的体积与它的长、宽、高之间的内在关系,从而总结出长方体体积的计算公式。
4、对一些内容进行了调整。
不再安排对体积和表面积进行对比的例题。
1、长方体和正方体的认识
长方体、正方体的特征
长方体、正方体的关系
2、长方体和正方体的表面积
表面积
表面积计算
3、长方体和正方体的体积
体积和体积单位
体积计算公式
体积单位间的进率
容积和容积单位
正方体教学设计人教版篇十
教学内容:
长方体和正方体的体积
教学目标:知识与技能目标:
1.理解长方体、正方体的体积计算公式的推导过程;
2.能说出长方体、正方体体积计算公式,并会用字母表示;
3.会正确计算长方体、正方体的体积,并联系简单的生活应用。
过程与方法目标:
1.通过拼搭,培养动手和动脑能力;
2.通过公式的推导,培养迁移、类推能力和抽象概括能力。
情感态度与价值观目标:
在个人及小组的探究活动中,培养团队协作,勇于探索的品质。
教学重点:
理解掌握长方体和正方体体积的计算。
教学关键:
学生通过摆放、观察、比较、分析,明确“长方体的体积所含体积单位数正好是长、宽、高的乘积”。
教学准备:
1.多媒体课件。
2.学具:每人一些单位1立方厘米的小正方体。
教学过程:引言
各位同学,各位老师大家好,今天,我们有幸来到这里共同学习一节数学课,我感到非常高兴。与其说是共同学习,也许不如说我们共同分享。其实,我是一个愿意和大家共同分享的人,因为“分享倍增快乐,合作迈向成功”(图片)同学是否愿意一起分享你们的聪明与智慧呢?(出示故事,学生阅读)
问题:你认为她是一个怎样的小姑娘?
师:对!聪明与勇敢是她最高贵的品质,值得我们尊敬与学习。
那么,你想不想成为这样的人呢?老师有几条秘诀给大家共同分享。(出示图片)你们能做得到吗?愿意展现自己的聪明与勇敢与大家共同分享吗?看,聪明的学生就是这么任性,愿意倍增快乐,迈向成功。好!回答老师一个问。
(问题2)为什么三个一齐就拉不上来呢?(引导学生说明三个一齐占的空间大或地方大)
师:同学们,这就是聪明,这就是勇敢,我们分享了快乐,我们也会取得成功。这位同学的回答,使我们这一节数学课从一个精彩迈向另一个精彩,因为他说出了我们数学生活学习中常用的也是非常重要的一个概念体积,什么是体积,体积就是物体所占空间的大小。(板书)这一节我们就来研究(板书:长方体与正方体的体积)。(上课)
师:看到这个题目,你想知道什么呢?(教师引导学生明白)
生:长方体的体积与哪些条件有关,长方体的体积如何计算。
教师板书学习目标:
1、长方体的体积与长方体的哪些因素有关?
2、长方体的体积如何计算?
师:下面就让我们共同分享我们的聪明与智慧吧
探究活动一
目标:长方体的体积与长方体的哪些因素有关
材料:三本五年级数学书。
要求:
1、用三本相同的书通过摆、拼来说明此题。
2、小组合作,有讲解,有观察,有记录。 3、将你们的成果写成结论,推荐学生讲解汇报。
(教师巡视,对学生提出的疑问进行指导,引发学生对长方体问题的思考)
学生汇报:长方体的体积与长方体的长宽高有关。因为宽和高不变,长增加,体积增加。同样,体积也增加。
师:我们找到了体积变化的相关条件,那么怎样计算长方体的体积呢?
探究活动二
目标:长方体的体积怎样计算
材料:长宽高1厘米的小正方体若干
要求:
1、组内学员要有分工合作精神,有观察,有记录。
2、请你用1立方厘米的小正方体拼成几种不同的长方体。
3、拼一种长方体,指出相对应的长宽高,并填写到表格中。
4、分析表格中的数据,并得出有关体积的结论。(学生活动,教师巡视指导学生完成对体积的探究)
学生汇报:要注重引导学生说出推导体积公式的过程,如:长方体的体积与长方体的`长宽高相关,也就是说长宽高的某种运算就能得到体积,相乘得到长方体的积。又试用其他几个,也同样得到相同的结论。所以我认为:长方体的体积等于长宽高相乘。
教师引导学生说完整,说明理由。并板书,学生齐读。
师:我们在学习数学的过程中,往往要求我们将数学生活化,将生活数学化,学习数学就是为了解决数学问题,请看:
探究活动三:
目标:解决生活中的数学问题
要求:
1、认真审题,理解题目中的数字和问题。
2、有疑问,可以在组内进行交流探讨。
3、要写出计算公式,工整认真,格式要正确。学生汇报,展示自己的作业成果。
师:每一组的同学都完成的很好,在组内进行了分享了自己对长方体体积的学习成果,帮助了别人,快乐了自己。但是在我们的生活中,有一类特殊的长方体,那么,它特殊在哪儿呢?看!
探究活动四:
目标:正方体体积的计算
要求:
1、认识正方体是长宽高都相等的特殊长方体。
2、组内学生讨论,能自己推导出正方体的体积公式。
3、能利用所学正方体知识解决数学问题。
看同学们学得多好啊!可我国伟大的教育家孔子说过:学而时习之,意思是,我们学习了新的知识,就要及时有效地进行复习和应用,这样才能掌握地更好。
1、完成对数学立体图形长方体和正方体体积公式的再认识。
2、长方体和正方体体积的简单计算。
3、作业:强化训练
4、思考:组合图形的计算。
快乐的时间就是那么的短暂,同学们这一节,我们不仅学会长方体和正方体的计算,而且学会了观察、思考、合作,更重要的是学会了分享,学会了合作。让我们重新审视我们先前说过的一句话:分享倍增快乐,合作迈向成功。
谢谢大家!
正方体教学设计人教版篇十一
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
长方体和正方体体积的计算方法,以及其体积公式的推导。
一、复习引入
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的`体积公式一般写成:v=a3(板书)
三、议一议
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
如果用s表示底面积,上面的公式可以写成:
v=sh
四、巩固练习
计算下面图形的体积
板书设计:
正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高
v=a3 v=sh
正方体教学设计人教版篇十二
教学目标:
1、使学生通过观察、操作等活动认识长方体正方体以及它的直观图,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,以及正方体和长方体的关系;
2、使学生在具体情境中,经历猜想、操作、验证、讨论、归纳等数学活动,培养学生的观察、概括能力及空间观念,发展数学思考;
3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
通过多种数学活动探究长方体、正方体的特征;充分认识直观图;理解长方体的长、宽、高与每个面的长、宽的区别。
教学难点:
充分认识直观图;建立“立体图形”的概念,形成表象.
教学过程:
1、图形王国里在开运动会,让我们一起去看看都有哪些图形参加?噢!来了很多的图形,谁给它们分分类?课件演示(说说分类的依据)。
2、老师拿的这些物体属于立体图形中的哪一种?(长方体)
引入:那对于长方体、正方体你了解多少呢?今天我们就再一次来领略,探究长方体、正方体的奥秘。(教师板书:长方体的认识)
同学们举生活中长方体或近似长方体的例子。
(一)认识长方体特征:
1、认识长方体各部分名称
认识长方体的面、棱、顶点。
让学生指着模型说一说哪些是面?哪些是棱?哪些是顶点
2、认识长方体的特征(分组合作学习)
(1)四人一小组合作,一边操作一边思考:
师:同学们根据自己准备的学具看一看数一数量一量剪一剪比一比小组合作学习。(教师对学生的操作应给予充分的肯定及鼓励。)
(出示探究表):
1、长方体有几个面?你是怎么数的?每个面是什么形状的?哪些面是完全相同的?你怎么知道的?
2、长方体有几条棱?你是怎么数的?哪些棱长度相等?你怎么知道的?
3、长方体有几个顶点?你来数一数。
师:自己先看一遍,有不理解的吗?强调“完全相同”的含义,即形状、大小都相同。
(2)学生以小组为单位讨论交流
(3)老师找学生分组板书面棱顶点的特征。学生汇报结果。
师:谁能把你们的学习结果汇报一下。
生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。(面怎样数不重复不遗漏?)
师:你们小组能派个代表给大家数一数这6个面吗?
生数。师引导有序的数。
师:你有这样的长方体吗?(有,出示)哪是相对的面?(指实物回答)
生:长方体相对的面面积相等。
师:说说棱的特点。
生:长方体有12条棱。师:你来数一数吧。(棱怎样数不重复不遗漏?)生:??
师:哪些棱长度相等?
生:相对的4条棱长度相等。(教师演示“相对棱相等”)(如果学生表述不出来,引导学生回忆在概括哪些面完全相同时是怎样说的。)
师:哪是相对的棱?生指。
师2:你用什么办法来证明相对的棱长度相等?
生1:用尺子量的。
生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。师:噢,你用的是反证法来说明。
师:谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)生数。
3、认识长方体的长宽高。
(1)小组合作以最快的速度做一个长方体。
师:如果让你做一个长方体框架你打算准备几根小棒?(12根)12根一样长的小棒吗?生思考,汇报。
(2)合作做一个长方体。思考:12条棱可以分为几组?
(3)展示作品,并交流分组。
(4)揭示长方体的长宽高。
师指出:相交于一个顶点的三条棱的长度分别叫长、宽、高。通常把水平方向的两条棱中较长的叫做长,较短的叫做宽,把竖直方向的一条棱叫做高。(课件演示)拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的.长、宽、高。问:长方体有几条长几条宽几条高?
(二)、认识正方体
1、师:认识了长方体,那正方体它又有什么特征?它与长方体有没有关系呢?
2、独立探索正方形特征:每个同学拿出自己的正方体纸盒,通过前面小组合作探索长方体特征的方法,自己独立探索正方形的特征,并完成提单上表格的内容。
3、完成后指名回答,并板书。
4、课件演示正方体的特征,加深对正方体特征的认识。
(三)长方体、正方体的关系
1、正方体、长方体相同点与不同点。
(1)师:我们一对长方体、正方体进行了认识,认真观察课件上的表格,你发现了什么?
(2)根据学生的回答,课件出示正方体、长方体相同点与不同点。
2、长方体、正方体的关系
(1)师:通过你们的观察和探究,长方体和正方体之间有何关系?
(2)根据学生的回答,课件出示集合图。
引导学生认识特殊长方体面、棱特征,深化认识。
1、完成练一练,先同桌交流在指名2人汇报。
2、口答:说出下面每个长方体的长、宽、高各是多少.
3、激疑:对于最后一幅图表述你有什么看法?
(预设:最后一个图形不是长方体而是正方体,板书完整课题:正方体)
4、问:你觉得用什么方法可以把一个长方体变换成正方体?
长方体和正方体有什么样的关系
四
师:同学们,今天通过你们的合作探究,认识长方体和正方体的特征,大家都很棒。下面我们进行几个练习,检验一下同学们对所学知识的掌握情况。
小小法官会判断。
(1)长方体的六个面一定是长方形(×)
(2)长方体有6个面,每个面有4条棱,共四六二十四条棱。(×)
(3)一个长方体,它有两个面是正方形,那√)么它有四个面面积相等;
((4)长方体有6个面,12条棱,8个顶点。(√)
一、填空题。
1、长、宽、高都相等的长方体叫正方体,正方体是都特殊的长方体,6个面都是正方形,6个面的面积相等,12条棱的长度都相等。
2、左图是正方每个面的面积是648厘米体,也叫做立方体平方厘米;每条棱厘米。是8厘米8厘米;它的棱长总和是96正方体棱长总和=棱长×1
3、一个正方体的棱长总和是24厘它的棱长是8厘米米,2厘米。
1、用铁丝焊成一个长20厘米,宽15厘米,高10厘米的长方体框架,至少需要铁丝多少厘米?6
2、思考?一个长方体棱长之和是36厘米,长是4厘米,宽是3厘米,高是多少厘米?
很多时候,大家的进步就像一张纸,的厚度一样,微不足道,甚至难以发现,但我们不应该忽视它的存在,只要脚踏实地,日积月累,一定会收获更大成功,成功其实离我们很近,它就是点点滴滴人进步。
正方体教学设计人教版篇十三
教学内容:
长方体和正方体的表面积的概念(第33~34页例题1及p36,t1~3)
教学目标:
① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。
② 会用求长方体表面积的方法解决生活中的简单问题。
③ 培养学生的分析能力,同时发展他们的空间观念。
教学重点:长方体表面积的计算方法。
教学难点:长方体表面积的计算方法。
教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:
一、预习提纲:
1、预习教材第33~34页例题1。
2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。
3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。
4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的长和宽与长方体的长和宽有什么关系?
5、练习:
观察下面纸箱
二、展示汇报:
1、什么是长方体的长、宽、高?长方形的面积怎么计算?
2、交流汇报。
(1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:
a、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。
b、 每个面的长和宽与长方体的长和宽有什么关系?
3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。
学生齐读概念后,教师板书课题:长方体和正方体的表面积。
(1)下面这个纸盒的表面积要怎么求呢?
前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m
左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m
这个包装箱的表面积是:
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66m
或者:
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=(0.35+0.28+0.2)×2
=0.83×2
=1.66 m 答:至少要用1.66 m 硬纸板。
(2)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂小结。
1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的`长和宽。
2、你发现长方体表面积的计算方法了吗?
结论: = 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
四、巩固练习。
完成p34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?
五、检测、反馈:
(一)完成p36练习六t1~3。
2、选择:
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。
a、 2×7×2+6×7×2+6×2
b、(2×7+2×6+6×7)×2
c、2×7+2×6+6×7
3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)
a、(1×1+1×3+1×3)×2
b、1×1×2+1×3×4
c、1×1×2+1×4×3
讨论得出:底面周长×高=4个侧面的面积
4、思考题:
我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?
板书设计:
长方体和正方体的表面积的概念
= 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。
正方体教学设计人教版篇十四
六年制小学数学第十一册p25—26。
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
学法指导
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
依次出示例10中的三个长方体,问:如果用1立方厘米的'小正方体摆出这三个长方体,各需要多少个小正方体?
师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?
通过交流得出公式:长方体的体积=长×宽×高。
问:如果用v表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?
交流得出:v=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结