在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
长方体和正方体教学设计理念篇一
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
长方体和正方体体积的计算方法,以及其体积公式的推导。
一、复习引入
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)
三、议一议
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
如果用s表示底面积,上面的公式可以写成:
v=sh
四、巩固练习
计算下面图形的体积
板书设计:
正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高
v=a3 v=sh
长方体和正方体教学设计理念篇二
教学内容:
长方体和正方体的体积
教学目标:知识与技能目标:
1.理解长方体、正方体的体积计算公式的推导过程;
2.能说出长方体、正方体体积计算公式,并会用字母表示;
3.会正确计算长方体、正方体的体积,并联系简单的生活应用。
过程与方法目标:
1.通过拼搭,培养动手和动脑能力;
2.通过公式的推导,培养迁移、类推能力和抽象概括能力。
情感态度与价值观目标:
在个人及小组的探究活动中,培养团队协作,勇于探索的品质。
教学重点:
理解掌握长方体和正方体体积的计算。
教学关键:
学生通过摆放、观察、比较、分析,明确“长方体的体积所含体积单位数正好是长、宽、高的乘积”。
教学准备:
1.多媒体课件。
2.学具:每人一些单位1立方厘米的小正方体。
教学过程:引言
各位同学,各位老师大家好,今天,我们有幸来到这里共同学习一节数学课,我感到非常高兴。与其说是共同学习,也许不如说我们共同分享。其实,我是一个愿意和大家共同分享的人,因为“分享倍增快乐,合作迈向成功”(图片)同学是否愿意一起分享你们的聪明与智慧呢?(出示故事,学生阅读)
问题:你认为她是一个怎样的小姑娘?
师:对!聪明与勇敢是她最高贵的品质,值得我们尊敬与学习。
那么,你想不想成为这样的人呢?老师有几条秘诀给大家共同分享。(出示图片)你们能做得到吗?愿意展现自己的聪明与勇敢与大家共同分享吗?看,聪明的学生就是这么任性,愿意倍增快乐,迈向成功。好!回答老师一个问。
(问题2)为什么三个一齐就拉不上来呢?(引导学生说明三个一齐占的空间大或地方大)
师:同学们,这就是聪明,这就是勇敢,我们分享了快乐,我们也会取得成功。这位同学的回答,使我们这一节数学课从一个精彩迈向另一个精彩,因为他说出了我们数学生活学习中常用的也是非常重要的一个概念体积,什么是体积,体积就是物体所占空间的大小。(板书)这一节我们就来研究(板书:长方体与正方体的体积)。(上课)
师:看到这个题目,你想知道什么呢?(教师引导学生明白)
生:长方体的体积与哪些条件有关,长方体的体积如何计算。
教师板书学习目标:
1、长方体的体积与长方体的哪些因素有关?
2、长方体的体积如何计算?
师:下面就让我们共同分享我们的聪明与智慧吧
探究活动一
目标:长方体的体积与长方体的哪些因素有关
材料:三本五年级数学书。
要求:
1、用三本相同的书通过摆、拼来说明此题。
2、小组合作,有讲解,有观察,有记录。 3、将你们的成果写成结论,推荐学生讲解汇报。
(教师巡视,对学生提出的疑问进行指导,引发学生对长方体问题的思考)
学生汇报:长方体的体积与长方体的长宽高有关。因为宽和高不变,长增加,体积增加。同样,体积也增加。
师:我们找到了体积变化的相关条件,那么怎样计算长方体的体积呢?
探究活动二
目标:长方体的体积怎样计算
材料:长宽高1厘米的小正方体若干
要求:
1、组内学员要有分工合作精神,有观察,有记录。
2、请你用1立方厘米的小正方体拼成几种不同的长方体。
3、拼一种长方体,指出相对应的长宽高,并填写到表格中。
4、分析表格中的数据,并得出有关体积的结论。(学生活动,教师巡视指导学生完成对体积的探究)
学生汇报:要注重引导学生说出推导体积公式的过程,如:长方体的体积与长方体的长宽高相关,也就是说长宽高的某种运算就能得到体积,相乘得到长方体的积。又试用其他几个,也同样得到相同的结论。所以我认为:长方体的体积等于长宽高相乘。
教师引导学生说完整,说明理由。并板书,学生齐读。
师:我们在学习数学的过程中,往往要求我们将数学生活化,将生活数学化,学习数学就是为了解决数学问题,请看:
探究活动三:
目标:解决生活中的数学问题
要求:
1、认真审题,理解题目中的数字和问题。
2、有疑问,可以在组内进行交流探讨。
3、要写出计算公式,工整认真,格式要正确。学生汇报,展示自己的作业成果。
师:每一组的同学都完成的很好,在组内进行了分享了自己对长方体体积的学习成果,帮助了别人,快乐了自己。但是在我们的生活中,有一类特殊的长方体,那么,它特殊在哪儿呢?看!
探究活动四:
目标:正方体体积的计算
要求:
1、认识正方体是长宽高都相等的特殊长方体。
2、组内学生讨论,能自己推导出正方体的体积公式。
3、能利用所学正方体知识解决数学问题。
看同学们学得多好啊!可我国伟大的教育家孔子说过:学而时习之,意思是,我们学习了新的知识,就要及时有效地进行复习和应用,这样才能掌握地更好。
1、完成对数学立体图形长方体和正方体体积公式的再认识。
2、长方体和正方体体积的简单计算。
3、作业:强化训练
4、思考:组合图形的计算。
快乐的时间就是那么的短暂,同学们这一节,我们不仅学会长方体和正方体的计算,而且学会了观察、思考、合作,更重要的是学会了分享,学会了合作。让我们重新审视我们先前说过的一句话:分享倍增快乐,合作迈向成功。
谢谢大家!
长方体和正方体教学设计理念篇三
教学目标:
1、知识与技能:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。
2、过程与方法:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。
3、情感态度价值观:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教具、学具准备:
长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。
教学过程:
1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!
2、小组合作,利用长、正方形纸板动手制作长方体纸盒。
3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。
生1:长方体有6个面、12条棱、8个顶点。
生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。
生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。
生4:拿着长方体指出它的长、宽、高。
师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)
1、教学长方体、正方体表面积的概念
师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用"上"、"下"、"左"、"右"、"前"、"后"标明六个面。
师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?
生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。
师:有几组面积相等的长方形?
生:总共有三组面积相等的长方形。
师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)
师:展开后的每个面是什么形状的?有几个相等的面?
生:每个面是正方形的,有6个相等的面。
师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。
(板书课题:长方体和正方体的表面积、长方体表面积的计算)
2、教学长方体、正方体表面积的计算
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。
生合作探究计算方法,汇报如下:(预设)
生1:我们组列式是6×5+6×5+6×3+6×3+5×3+5×3,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。
生2:我们组列式为6×5×2+6×3×2+5×3×2。我用6×5×2求上下两个面的面积;用6×3×2求出前后两个面的面积;用5×3×2求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。
生3:我们组列式是(6×5+6×3+5×3)×2。我用6×5求出上面;6×3求出前面;5×3求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。
生4:我们组列式是(5+3+5+3)×6+5×3×2。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;5×3×2求的是左右两个面的面积。最后再求出它们的和。
生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:6×3×4+3×3×2,我用6×3×4求的是上下、前后四个面的面积;用3×3×2求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。
师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。
生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长×棱长×6。
1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。
2、生独立计算。
3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)
简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。
1、师:请同学们拿出正方体药盒,帮助工人师傅计算一下要加工100个这样的药盒,至少要用多少纸板?
2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)
3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)
师:这节课你有什么收获?
长方体和正方体教学设计理念篇四
本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。
1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习.
(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。
这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。
(二)操作想象,探索公式。
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。
具体的过程是:
(1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积
(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。
(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?
这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。
(4)用字母表示公式,要注意书写形式的指导。
(5)完成例1,学以致用,加深理解。
通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。
(三)巩固练习,扩展应用
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:
1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。
2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
完成练习七第5—8题,让学生运用公式计算。
设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。
(四)总结全课,质疑解惑。
(1)谈收获:让学生说说这节课学习了什么?
(2)质疑解惑:还有什么疑问。
这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。
长方体和正方体教学设计理念篇五
1.通过整理、复习,使学生进一步掌握长方体和正方体的特征,表面积、体积、容积的概念以及相邻单位间的进率;能进一步认识长方体、正方体的表面积和体积及其计算方法,并能正确地计算。理解它们的内在联系,能灵活运用。
2.在学生对这些形体认识和理解的基础上,进一步培养空间观念;让学生在解决实际问题的过程中,感受数学在生活中的作用,体会数学的价值,进一步培养学生的合作意识和创新精神。
学生对知识进行自我梳理,灵活运用知识解决实际问题。
课件 火柴盒 魔方 特仑苏牛奶 练习纸
一、创设情境,导入新课。
师:看一下老师为你们准备了什么?
生1:火柴盒、魔方、牛奶。
师:它们各是什么形状?
生:火柴盒是长方体,魔方是正方体、牛奶是长方体。
师:今天这节数学课,这些小小的物品就将成为我们学习中的小助手,和我们一起来整理和复习有关长方体正方体的知识。
(教师板书:长方体和正方体的整理和复习)
(设计意图:从学生平时接触较多的“火柴盒、魔方”入手,给学生一种亲切与熟悉的感觉,能更好地使学生从心理上拉近数学与生活的距离。)
二、第一次尝试:自我梳理,形成网络。
同学们先来回忆一下:长方体正方体的形状有什么特征? (7号抢答)
形体相同点不同点联系面棱顶点面的形状面的面积棱长长方体6个
6个12条8个6个面都是长方形,有时有两个相对的面是正方形相对的两个面面积相等相对的棱长度相等正方体是一种特殊的长方体正方体12条8个6个面都是完全相同的正方形6个面的面积都相等12条棱的长度都相等
师:在这一单元中,你还学过哪些知识?(棱长和、表面积、体积、容积)
师:你能说出它们的意义吗?
小试牛刀:必答题(6号同学)。
填空:棱长和、表面积、体积、容积。
1、给一个玻璃柜台的各边都安上角铁,是求这个玻璃柜台的( )。
2、给一个乒乓球台喷漆,是求这个乒乓球台的( )。
3、一个长方体容器,里面量长5cm,宽3cm,高2cm,装满水后,水的( )是30cm。
4、一个长方体容器,从里面量长5cm,宽3cm,高2cm,这个容器的( )是30ml。
5、给一个洗衣机做布罩,是求这个洗衣机的( )。
三、小组交流、全班汇报。
引导学生利用表格在小组内进一步整理(2号填写,3号、5号汇报)
形体表面积体积(容积)定义计算公式
(长a宽b高h)常用单位定义计算公式常用单位长方体长方体或正方体6个面的面积之和,叫做它们的表面积
s=(ab+ah+bh)×2
平方厘米
平方分米
平方米
相邻单位间的进率是100物体所占空间的大小叫做物体的体积。
容器所能容纳物体的体积,通常叫做它们的容积v=abh
v=sh
立方厘米(升毫)
立方分米(升)
立方米
相邻单位间的进率是1000正方体
s=6a
(设计意图:让学生自己回忆和整理知识,有利于他们主动地梳理头脑中原有的知识体系,加强理解知识间的内在联系,使知识在孩子们的头脑中形成网络。而让他们自由地独立或合作设计,也较大程度地激发了学生的创造性与合作性。)
四、第二次尝试
师:通过刚才同学们的汇报和老师设计的表格,同学们已经对本单元知识有了系统的了解,下面我们一起做几道练习题,检验一下同学们是否能灵活运用这些知识。
(一)抢答题(4号同学)。
判断并说明理由。
1、棱长是6分米的正方体,它的表面积和体积相等 。 ( )
2、a=3a ( )
3、正方体是特殊的长方体。 ( )
4、电饭锅的体积大约是20立方厘米。 ( )
(二)今天老师设计的习题都与火柴盒、牛奶盒有关,请同学们猜猜,老师为你们设计了什么样的问题?
师:看来有关它们的数学问题还真不少。请同学们看老师设计的问题。
问题一:
如果把这个火柴盒放在桌子上,它所占桌面的面积最大是多少?最小是多少?
学生自己解答,指名到前面演示:怎样摆放占桌面的面积最大?怎样摆放占桌面的面积最小?
师:以后再摆放物品时我们就可以利用这个知识合理利用空间了。
问题二:
做这样1个火柴盒的外壳要用多少纸板?做这样1个火柴盒内盒要用多少纸板?(衔接处忽略不计)
要求只列式,说明每步求的是什么。
师: 你还能举出类似计算火柴盒内盒这样只计算5个面面积的例子吗?
师:火柴盒不能只有内盒吧?(外壳)计算几个面?(4个)
类似计算火柴盒外壳这样只计算4个面面积的情况,在生活中还有哪些?
(设计意图:问题二通过计算火柴盒的内盒和外壳所用纸板即表面积的大小,以及举生活中的实际例子,让学生进一步体会数学与生活的联系)
问题三:
用两盒牛奶拼成一个长方体,这个长方体的表面积、体积与原来两盒牛奶的表面积、体积和相比有没有变化?如果有变化了多少?小结:拼的方法不同,表面积减少的也不一样。
1、做个小小包装师:如果要给这几盒牛奶套上包装盒,不计算接头处与损耗材料,最少需要多少硬纸片?
(小组合作,拼一拼,汇报方法,集体评价。)
2、若将1盒牛奶倒入一个底面积是80平方厘米的长方体饭盒里,这个饭盒的高至少为多少厘米?
学生计算,并测量高度。
(设计意图:知识应用分成两个环节:基础练习给定数据的题目,学会熟练应用数据,巩固所学知识;实践练习要由学生自己测量出数据,解决实际问题,这自然需要学生能灵活运用所学知识。这种练习设计体现了课标所倡导的“基础性”“层次性”“应用性”的特点。)
五、课堂小节
像火柴盒这样的一系列问题,在生活中有很多。这就说明数学就在我们身边,我们今后要学会用数学的眼光去观察物体,从中发现问题、解决问题。
长方体和正方体教学设计理念篇六
:九年义务教育小学数学第二册第23页教学内容。
1.让学生直观认识长方体和正方体,初步掌握它们的特征,会辨认这两种图形。
2.培养学生动手操作能力、观察能力和初步的归纳概括能力。
3.精心组织学生活动,激发学生兴趣,培养学生主动探索的欲望和创新精神。
上课尹始,教师出示灯片:由若于长方形和正方形组成的童话式的图形王国城门图。然后教师谈话:"小朋友,在这里你能找出我们的老朋友长方形和正方形吗?"
[评析:活泼的画面,生动的语言,能很快地集中学生的注意,激发学习兴趣,既让学生回顾了旧知,又唤起了学生参与学习的欲望。]
教师拉开灯片的覆盖片,显示出长方体和正方体,并提出两个问题,(1)老师给大家介绍两个新朋友,它们是谁呢?有谁认识它们?(2)长方体、正方体跟我们的老朋友长方形、正方形相同吗?为什么?
[评析:运用恰当的电教媒体,引导学生在比较中直观感知长方体、正方体与长方形、正方形的区别,从而将面和体区别开来,使学生从整体上初步感知新知识。并且,恰当的电教媒体,生动的问题情境,能进一步激发学生的学习兴趣,唤起学生主动探索的欲望。]
1.认识长方体。
(1)动手操作,直观感知。
①教师依次出现两个长方体(一般的和特殊的)。问:谁认识它?小朋友想不想对自己动手做一个长方体呢?
②教师指导学生用长方体展开图自制长方体,让学生在做一做中,初步感知长方体的特征。
(2)小组研讨,建立表象。学生在做一做中,初步感知长方体以后,教师适时组织学生开展小组讨论:在制作长方体过程中,你发现了长方体的什么秘密?先小组讨论,再请小组代表汇报发言。
(3)验证认识,形成概念。
①当学生通过小组讨论,能用自己的语言归纳出长方体特征后,教师播放电视录相:一个长方体匀速转动,清晰、布序地显示长方体六个面,按着六个面一对一分解3排开。验证学生的认识长方体有六个面,每个面都是长方形{有时有两个面是正方形}。
②请小朋友一起有序地数出长方体的六个面。
[评析:心理学研究表明,新颖的、活动的、直观形象的剌激物,最容易引起儿童大脑皮层有关部位的兴奋,形成优势兴奋灶,认识长方体这一学习环节中,教师正是利用学生的心理特点,组织学生开展形式多样的学习活动。让学生在做一做中,感知长方体;在学生互相争论、互相补充、互相启发中建立长方体清晰的表象;再通过电视录相验证学生的认识,促使学生形成新的认知结构,这样,多种感官参与活动,有利学生掌握新知,发展能力,培养创新意识。]
2.认识正方体。
(1)出示正方体模型,问:小朋友认识它吗?正方体有什么特征呢?请朋友带着这一个问题看电视录相。
(2)观看电视画面,指名回答:正方体什么特征?
[评析:在学生已经认识了长方体的基础上学习正方体就比较容易了。因此,这个环节直接采用看录相,充分利用电教媒体的优势,让学生在看一看、说一说的?活动中,归纳、表述正方体的特征。这样,有利于培养学生自学能力及初步逻辑思维能力。]
1.让学生分别找出学具中的长方体和正方体。
2.组织学生开展小组讨论:怎样辨别长方体和正方体呢?(先小组合作学习,再请小组代表汇报小组合作学习结果。
3.小结长方体和正方体的特征。
[评析:学生认识了长方体和正方体之后,教师及时组织学生开展讨论:你是怎样来区别长方体和正方体的?这一问题的提出,引发了学习思考。学生在思考过程中必须对长方体和正方体的有关知识进行搜索、归纳、整理,让学生在比较中进一步认识长方体和正方体,掌握学习方法,发展学生思维能力。
1.数一数。如图,
①图a中有几个小正方体?②至少补上几个小正方体就可以成为一个大正方体?(学生回答后,教师用电脑操作,图a→b,添加部分闪烁。)
2.想一想。如图:
(1)这些图片中哪些可以做成一个长方体?哪些不能?为什么?
(2)折长方体比赛。
(3)用12个小正方体摆成一个长方体,你有几种摆法?(在实物投影仪上操作展示)
[评析:这三组练习的设计,层次分明,学生在数一数、想一想、摆一摆的练习中巩固新知,发展学生空间观念。并且,恰当的电教媒体的应用,形象直观,简洁省时,让学生在一次次的成功体验中,主动参与知识的构建过程。]
4.做一做。让学生用橡皮泥做一个长方体或正方体,自由上台展示作品,并介绍制作经验。)
[评析:这一练习的设计,让学生在做长方体或正方体中,复习长方体或正方体的特征,了解长方体或正方体面与面之间的关系,渗透事物是相互联系的辨证唯物主义思想,培养学生动手操作能力,发展空间观念,激发创新意识。学生自由上台展示自己的作品并介绍制作经验将本课教学推向高潮,让学生在轻松、愉快的学习情境中,完成本课的学习。这样,学生掌握了知识,又培养了能力,发展了个性。]
[总评:长方体、正方体的初步认识,是在学生已初步认识了长方形和正方形的基础上学习的,是学生初次接触立体图形。教学中,教师根据低年级学生活泼好动,对新鲜事物感兴趣,但注意力不能长时间集中的心理特点,很好地贯彻了活动促发展的教学思想,为学生创设了一种愉悦、和谐、自主的课堂氛围,让学生在做一做、玩一玩、看一看、想一想的活动中,主动参与新知识的构建过程,从而激发了创新意识,掌握了知识,发展了能力。]
长方体和正方体教学设计理念篇七
长方体和正方体的认识
(一)掌握长方体和正方体的特征,认识它们之间的关系。
(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 教学重点和难点
(一)长方体和正方体的特征。
(二)认识立体图形,发展学生初步的空间观念。 教具准备
长方体框架、长方体、正方体、圆柱、墨水瓶盒等,课件 学具:长方体和正方体纸盒。
四、教学过程
(一)复习准备
同学们,我们一起来回忆一下以前学过什么图形?谁来说说 (学生说)
不错,那谁来说以说它们当中哪些图形是平面图形?哪些是立体图形?(边叙述,边出示幻灯片)
今天我们就来进一步认识这些图形中的两个——长方体和正方体 (板书:长方体和正方体)
(二)新授
1、老师今天带来了长方体(展示长方体)和正方体(展示正方体)。 2、还记得我们以前认识图形的一些方法吗?谁愿意来给老师说说? (学生说:摸一摸,看一看,比一比,量一量,数一数 ……)
我们今天进一步认识长方体和正方体,老师要看一下你们都用了哪些方法?
现在请仔细观察你的长方体和正方体,想一想,它是由哪些部分组成的?我请......
(学生说)
3、说的真好,长方体和正方体都是由面、棱、顶点三个部分组成的,那谁来指指长方体的面是哪一个部分?
(请一个学生上台来说)
拿出你们的长方体和正方体摸摸看。 谁来指指长方体的棱是哪一个部分? (请一个学生上台来说)
拿出你们的长方体和正方体摸摸看。
那长方体或正方体的顶点又是指哪一个部分?请同桌互相指指看看。 (同桌互相指顶点) (课件出示)
数学上我们把长方体或正方体平平的部分叫做面,把两个面相交的线段叫做棱,我们把三条棱相交的点叫做顶点
今天我们就从面、棱、顶点三个方面来研究长方体和正方体 首先研究长方体,我们一起来读一下讨论要求。 (学生读要求)
现在每排的4个同学为一个小组,分组讨论,并将讨论的结果填写在老师发放的表格中。
长方体和正方体教学设计理念篇八
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
长方体和正方体教学设计理念篇九
教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
长方体和正方体教学设计理念篇十
1.通过整理和复习,使学生进一步掌握长方体和正方体的特征及内在联系,表面积、体积、容积的概念以及相邻单位间的进率;
2.能进一步掌握长方体、正方体的表面积与体积的计算方法以及不规则物体的体积的计算方法,并能正确的计算。
3.进一步培养学生的空间观念,提高空间想象能力。
1.教学重点:归纳整理有关长方体和正方体的知识,形成知识体系。
2.教学难点:灵活运用所学知识,解决实际问题。
一、谈话导入
同学们,最近这段时间我们都在学习长方体和正方体这个单元的知识,今天我们就一起对这部分知识进行回顾和整理。
让学生以小组为单位,在组内交流、回顾本单元的相关知识。
二、师生互动
1.呈现问题
出示问题:本单元学习了关于长方体和正方体的哪些知识?
学生自由发言,说说本单元所学的知识。
对照教材第42页情境图,完成下列问题。
(1)用图表示长方体和正方体的关系,并说明为什么。
(2)在长方体中分别指出与红色线标示的棱平行的棱和垂直的棱,你能发现什么?
学生独立思考,在小组内交流讨论,全班反馈。
2.全班反馈
相同点:有8个顶点,6个面,12条棱。
不同点:长方体:相对的面的面积相等,相对的棱长度相等。
正方体:每个面的面积都相等,每条棱的长度都相等。
关系:正方体是特殊的长方体。
3.继续呈现以下问题
(1)关于长方体和正方体的表面积和体积知识你学到了什么?
(2)回忆计算表面积的方法以及探索体积公式的过程,想一想关键要知道什么?计算体积和容积有什么相同点?
4.继续反馈
指名学生反馈,教师适时板书总结。表面积是各个面的总面积。
体积是物体所占空间的大小。
容积是容器所能容纳物体的体积,其计算公式与体积的计算公式相同。
三、巩固练习
1.基础练习
(1)指导学生完成教材第43页“练习十”第1题。
(2)指导学生完成教材第43页“练习十”第2题。
要求学生独立思考,再组织交流。
四、课堂小结今天我们整理与复习了长方体和正方体这单元的相关知识。同学们,通过今天的复习,你们又有什么新的收获?
长方体和正方体教学设计理念篇十一
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点:长方体和正方体的特征。
难点:立体图形的识图。
掌握长方体和正方体的特征,认识它们之间的关系
认真看课本认识长方体的特征和正方体的特征
(一)长方体的特征。
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
小组讨论,然后完成p28的表格。请完整地说一说长方体的特征。
明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(二)正方体特征。
对照长方体的特征学生自己研究正方体的特征。学生讨论、归纳后,教师板书:正方体面:6个完全相同的正方形。棱:12条棱长度都相等。顶:8个。讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。(正方体是特殊的长方体)
1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2、判断.正确的在括号里画√,错误的画×。
(1)长方体的六个面一定是长方形。()
(2)正方体的六个面面积一定相等。()
(3)一个长方体(非正方体)最多有四个面面积相等。()
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。()
六
谁来说一说长方体和正方体的特征和它们之间的关系?
1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?
2、完成p29的“做一做”。
板书设计:长方体和正方体的认识比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同
长方体和正方体教学设计理念篇十二
教学内容:
人教版教材数学五年级下册29页到30页教学目标:
1、探究、推导长方体和正方体体积的计算公式
2、理解掌握并运用长方体和正方体体积公式解决实际问题
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力
教学重点:
理解掌握长方体和正方体体积的计算公式
教学难点:
长方体和正方体体积公式的推导
教具准备:
学生准备小正方体(多个)ppt
教学过程:
1、填空
(1)()叫做物体的体积。
(2)常用的体积单位有()()()
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)
2、出示学习目标:
(1)探究总结长方体和正方体的体积的计算方法
(2)运用长方体和正方体体积的计算公式解决实际问题
1、回顾“以旧学新”的几何问题研究方法
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)
(2)把不同的长方体的相关数据填入下表(29页表格)
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
5、各小组学生合作学习后,让各小组汇报数据,汇总到一起填入表格,观察表格,总结长方体体积公式:长方体体积=长×宽×高用字母表示:v=abh
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)
2、一块棱长30厘米的正方体冰块,它的`体积是多少立方厘米?(33页第9题)
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)
这节课你有什么收获?
板书设计:
长方体和正方体体积
长方体体积=长×宽×高
v=abh正方体体积=棱长×棱长×棱长
v=a×a×a=a3
长方体和正方体教学设计理念篇十三
1、通过整理、复习,使学生进一步理解长方体和正方体有关知识及内在联系,并能灵活运用。
2、在学生对这些形体认识和理解的基础上,进一步培养空间观念。
3、让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神。
灵活运用知识解决实际问题。
牛奶、
1、师:同学们,五一假期刚刚结束,谁来谈一谈这七天你去哪儿旅游了?
学生自由畅谈。
老师也利用假期到国际大都市——上海旅游了一趟,并有幸随旅行团参观了上海光明集团牛奶的整个生产流水线,机会非常难得,同学们想不想跟老师一块去看一看呢?
2、课件播放生产过程
师:看了刚才这些,请同学们想一想,在生产牛奶的整个过程中,工人们应该考虑哪些数学问题?
(学生可能会说:做一个盒子要用多少材料,一个牛奶盒可装多少牛奶,一只箱子可装多少盒牛奶……)
3、师:同学们考虑得非常全面。在生产的过程中,有些问题就用到了长方体和正方体的知识。这节课我们就来进行整理和复习。
(板书:长方体和正方体的复习)
1、自主回忆
师:应该复习哪些方面呢?(生说师写:特征、表面积和体积)
看着上面的表格回忆一下,可以一个人轻轻地说,也可以和同桌一起说。
2、交流评价
谁先来说说你已经知道了哪些知识?
(指名说,指名写)
名称特 征表面积体积
长方体有6个面,一般是长方形,相对的两个面的面积相等;有12条棱,相对的棱的长度相等;有8个顶点。s=2(ab+ah+bh)v=abh
正方体有6个面都是正方形,且面积相等;有12条棱,棱长都相等;有8个顶点。s=6a2v=a3
3、归纳总结
长方体和正方体有什么联系?
(正方体是一种特殊的长方体。它们的体积都可以用底面积乘高来计算。)
师:刚才我们对有关知识进行了系统的整理,下面请同学们运用这些知识帮助工人叔叔来解决遇到的几个问题。
1、基础练习
(1)师:由于天气太热,牛奶容易变质,如果有小包装就好了。同学们,请你当回小设计师,为你们小组这6盒牛奶设计一个小箱子吧。
假如按照这样的排列方式装进一个纸箱(课件出示),请你算一算:制作这样一个纸箱至少需要多少纸板?这个纸箱的体积是多少?
(2)在算之前,你必须要知道什么条件?(小盒的长、宽、高)
那么就动手量一量吧,最好保留整厘米数。
量好了就告诉老师,我们统一长度。
(3)学生尝试解答,汇报方法,集体评价。
你是怎么求的?还有别的想法吗?
(估计学生在求表面积时会出现错误)
(4)下面三幅图,哪一幅折起来能成为一个牛奶盒?
2、开放练习
还有其他摆法吗?6人小组动手摆一摆,记下长、宽、高,再算一算表面积与体积,填在表格里。
学生活动,教师参与。(让他们挑选一种摆放好,加以展示)
汇报交流,生说师记。
方法长(厘米)宽(厘米)高(厘米)表面积(平方厘米)体积(立方厘米)
1
观察表格,你发现了什么?(从中可以得出结论:长、宽、高越接近,即越接近于正方体,表面积越大;体积不变。)
3、拓展练习
(课件出示)如果给你很多牛奶盒继续摆,一直摆成一个正方体为止,这个正方体的体积最小是多少立方厘米?
(棱长如何确定?取长宽高的最小公倍数)
至少需要多少个盒子?(一层摆几个,摆几层)
师:刚才我们为6盒牛奶又设计了5种包装方法,回去请同学们试着画一画这个小盒子的展开图。
长方体和正方体教学设计理念篇十四
教学内容:
长方体和正方体的表面积的概念(第33~34页例题1及p36,t1~3)
教学目标:
① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。
② 会用求长方体表面积的方法解决生活中的简单问题。
③ 培养学生的分析能力,同时发展他们的空间观念。
教学重点:长方体表面积的计算方法。
教学难点:长方体表面积的计算方法。
教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:
一、预习提纲:
1、预习教材第33~34页例题1。
2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。
3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。
4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的长和宽与长方体的长和宽有什么关系?
5、练习:
观察下面纸箱
二、展示汇报:
1、什么是长方体的长、宽、高?长方形的面积怎么计算?
2、交流汇报。
(1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:
a、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。
b、 每个面的长和宽与长方体的长和宽有什么关系?
3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。
学生齐读概念后,教师板书课题:长方体和正方体的表面积。
(1)下面这个纸盒的表面积要怎么求呢?
前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m
左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m
这个包装箱的表面积是:
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66m
或者:
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=(0.35+0.28+0.2)×2
=0.83×2
=1.66 m 答:至少要用1.66 m 硬纸板。
(2)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂小结。
1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
2、你发现长方体表面积的计算方法了吗?
结论: = 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
四、巩固练习。
完成p34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?
五、检测、反馈:
(一)完成p36练习六t1~3。
2、选择:
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。
a、 2×7×2+6×7×2+6×2
b、(2×7+2×6+6×7)×2
c、2×7+2×6+6×7
3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)
a、(1×1+1×3+1×3)×2
b、1×1×2+1×3×4
c、1×1×2+1×4×3
讨论得出:底面周长×高=4个侧面的面积
4、思考题:
我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?
板书设计:
长方体和正方体的表面积的概念
= 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。