当前位置:网站首页 >> 作文 >> 2023年人教版分数除法教案(12篇)

2023年人教版分数除法教案(12篇)

格式:DOC 上传日期:2023-03-10 10:23:17
2023年人教版分数除法教案(12篇)
时间:2023-03-10 10:23:17     小编:zdfb

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

人教版分数除法教案篇一

使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

教学重点:

分析题里所含的数量关系,把哪个数看作单位1。

教学难点:

怎样列出方程。

教学过程:

列式计算,并口述把哪个数看作单位1。

(1)的是多少? ( )看作单位1。

(2)14的是多少? ( )看作单位1。

(3)1的是多少? ( )看作单位1。

1、板书课题:列方程解文字题

2、出示例4:一个数的是,这个数是多少 ?

(1) 分析数量关系

提问

①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

②硬该把哪个数看作单位1?为什么?

③单位1所表示的数知道吗?

④怎样求单位1所表示的“这个数”?(引导学生用设未知数x的方法来解决)。

使学生明确:根据一个数乘以分数的意义。

由已知:一个数的是,得:一个数×=?

(2) 列方程解文字题。

第一步,设未知数为x。教师板书

解:设这个数是x。

第二步,根据题意列出方程。教师板书

x×=

第三步,解这个方程。教师板书:(略)

第四步,检验:(略)

第五步:作答

3、小结

(1)怎样设求知数?

要求单位“1”的量,设单位“1”的量为x。

(2) 样根据题意列方程?

找出题中数量之间的等量关系。

1、教科书第35页“做一做”。

2、一个数的1倍等于2,求这个数。

练习九第12、16—19题。

练习九第13—15题。

练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

人教版分数除法教案篇二

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

人教版分数除法教案篇三

本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

1、理解并掌握分数除法的计算方法,回进行分数除法计算。

2、回解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

4、能运用比的知识解决有关的实际问题。

本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

1、让学生理解分数除法的运算意义。

2、掌握分数除以整数的计算方法。

3、培养学生的计算能力和分析能力。

备注

活动一:

出示例1

每盒水果糖重100克,3盒有多重?

1、读题理解题意

2、列式100*3=300

3、把乘法算式改成两道除法算式

300/3=100300/100=3

4、用千克做单位怎样列式?

1/10*3=3/10

5、|用同样的方法改写成除法算

小结:分数除法的意义

活动二:

出示例2

把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2

3、根据上面的折纸实验和算式,你发现什么规律?

小结:(略)

活动三:

巩固练习:

1、31页做一做1、2

板书设计

略去设计

人教版分数除法教案篇四

教材第27~28页的内容及练习。

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示p28的试一试。

1.统一分数除法的计算法则。

2.指导完成p28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: p29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

人教版分数除法教案篇五

4、学习运用线段图帮助分析数量关系。

5、加强列方程的思维训练。

6、培养学生分析问题解决问题的能力。

教学过程:备注

活动一:复习与准备

1、根据题意列出方程。

(1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?

(2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?

活动二:出示例2

一、

1、审题。

2、看例题的插图,理解题目的意思,说说知道了什么,要求什么

3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。

4、理解数量关系

二、

1、分析、解答

2、说说数量关系。

3、学生根据得到的数量关系列方程解答。

4、交流各自的解法。

小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

巩固联系:

1、41页7、8题

2、41页10题

板书设计

人教版分数除法教案篇六

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

使学生理解算理,正确总结、应用计算法则。

使学生理解整数除以分数的算理。

教具准备:多媒体课件

一、旧知铺垫(课件出示)

1、复习整数除法的'意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

a、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

b、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:p28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

a、 ÷2= =,每份就是2个。

b、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

人教版分数除法教案篇七

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

利用法则正确、迅速地进行计算,并能解决一些实际问题。

多媒体课件、实物投影。

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、p31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

人教版分数除法教案篇八

:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

1.口算下列各题。

2.把下列假分数改写成带分数。

3.把下列带分数改写成假分数。

让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

1.教学例5。

教师出示例5:

教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

2.做教科书第39页中间做一做的题目。

让学生独立完成。做完后集体订正。

3.教学例6。

(1)准备题。

①的3倍是多少?②的是多少?③的是多少?

教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

教师让学生计算后集体订正。

(2)教学6。

教师出示例6:

教师指名说题目的条件和问题。

教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

教师:应该设什么数为未知数x?(设这个数为未知数x。)

让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

4.做教科书39页下面做一做题目。

让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

1.做练习十第1题第1行的小题。

让学生装独立完成。做完后集体订正。

2.做练习十第2题的前2个小题。

让学生装独立完成,做完后集体订正。

3.做练习十第3题的第(1)~(3)题。

第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

4.做练习十的第5题。

教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

人教版分数除法教案篇九

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

多媒体课件,圆形纸片,剪刀

一、创设情境,导入新课,

师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

怎么列式?生:8÷4=2(个)

2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

怎么列式?生:1÷4=

二、动手操作,探索新知

1、探索一个物体平均分,体会分数与除法的关系。

(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

生独立思考并回答。

全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

2、探索多个物体平均分,体会分数与除法的关系。

师:把3个蛋糕平均分给4个人,每人分得多少个?

师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

3、总结概括分数与除法之间的关系。

1÷4=(个)3÷4=(个)

5÷7=(个)3÷5=(个)

师:观察黑板上的这些算式,你发现了什么?

三、观察算式,概括分数与除法的关系。

(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

(2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

师强调:相当于

(3)师:请每个同学看着这些算式说一说分数与除法的关系。

(师板书):被除数÷除数=被除数/除数

提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

三、练习巩固应用

1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

四、全课小结今天这堂课你有什么收获?还有什么问题吗?

人教版分数除法教案篇十

1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

弄清单位1的量,会分析题中的数量关系。

分析题中的数量关系。

小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。 解:设买来大米x千克。

x- x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。 解:设航模小组有人。

+ =25

(1+ )=25

=25

=20

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

练习十第4、12、14题。

人教版分数除法教案篇十一

使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。

进一步掌握分数除法的计算方法。

教学过程设计

师生活动

一、揭示课题

二、计算练习

三、综合练习

四、课堂。

五、作业

1、复习法则。

问:分数除法要怎样计算?

2、计算:

5/7÷1014÷4/512/13÷8/9

三人板演。

3、练习八17

上下练习,说说是怎样想的。

问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?

4、练习八18

学生口答,选择说怎样算的?

1、练习八19第一行

四人板演;计算时说明要注意的约分等问题。

2、练习八20

说说已知什么数量,要求什么数量。

练习计算。

口答算式与结果,让学生说说各按怎样的数量关系列式。

3、练习八21

问:解答这道题的数量关系是什么?

学生解答。口答算式。

为什么3/4×2/5来计算?

3、口答。

根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。

(1)桃树占果树总棵数的2/5。

(2)三好学生占全班人数的3/20。

(3)修好了一条路的3/7。

(4)一堆煤的1/4已经运走。

(5)这批布的2/3是花布。

单位“1”的量×几分之几=几分之几的对应数量

练习八19第二、三

本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。

人教版分数除法教案篇十二

1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

3、能很好的计算分数乘除混合运算的题目。

分数除法的计算的方法。

分数乘除的混合运算的运算的计算的正确率

一、复习回顾

小组讨论

1、怎么样来计算分数除法

请学生进行讨论,讨论好以后 再请学生进行回 答。

2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

请生说说你是怎么来理解这句话的。

二、进行练习

1、做课本66的1

请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

学生做好了以后再请学生进行口答。

对于做错的题目,让请学生自己来分析下错误的原因是什么?

2、做第2题

前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

并请学生上黑板进行板演。

进行集体订正。

3、对比练习

1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

4、做66页第4题

请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

做好以后请学生进行板演

5、根据方程或算式,将应用题补充完整。

1)、120×3/8

( ),苹果树的棵数是梨树的3/8,( )?

2)、3/8x=120

( ),苹果树的棵数是梨树的3/8,( )?

3)、120+120×3/8

( ),苹果树的棵数是梨树的3/8,( )?

请学生独立的做,做好了以后请学生说说是怎么想的?

三、布置作业

做66页第5~7题

1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

在( )里填上“>”“<”“=”

4/7×1/3( )4/7 4/7×4/3( )4/7

4/7÷1/3( )4/7 4/7÷4/3( )4/7

4/7÷1( )4/7 4/7×1( )4/7

先让学生独立思考,再说说判断的结果和理由。

2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服