当前位置:网站首页 >> 作文 >> 《方程的意义》教学反思简单(十篇)

《方程的意义》教学反思简单(十篇)

格式:DOC 上传日期:2023-02-24 10:56:11
《方程的意义》教学反思简单(十篇)
时间:2023-02-24 10:56:11     小编:zdfb

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

《方程的意义》教学反思简单篇一

数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。

《方程的意义》这节课与学生的生活有密切联系,因此在课始,采用学生生活中常见的跷跷板游戏,让学生感受到类似于天平的“相等”和“不等”。这样在结合天平感受这种关系以及最终体会到方程中“相等”的关系时,学生就会感受水到渠成。

因为五年级学生已经进入了高年级,是有一定的学习能力的。所以,认识方程中,我选择了放手让学生进行自学。并给出了一定的自学提纲:(1)是方程,我的'例子还有。(2)不是方程(可以举例)。(3)我还知道。这里学生自学时是带着自己例子进行思辨性的自学,所以感觉学生理解的还是比较的透彻的,在交流哪些不是方程时,学生理解了等式、不等式、方程之间的关系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。

根据数量之间的关系列出方程也是本节课的重点之一。同时,这点也是后续列方程解决实际问题的一个基础。所以在出示实际问题列出方程时,我总是追问:你是怎么想的?让学生感受到搞清数量之间的关系是正确列出方程的前提条件。

另外,在练习的设计上,增加一些思维的难度和挑战也是锻炼学生数学思维的一个常态化的工作。

当然这节课还存在一些问题,比如对等式的突出得不够,学生“说”的训练不够,应该给学生更多的表述的机会。

《方程的意义》教学反思简单篇二

《方程的意义》本课是人教版五年级上册第五单元的起始课,属于概念教学。对于概念的学习来说,如何理解定义是重要的,方程的意义不在于方程概念本身,而是方程更为丰富的内涵。就本节课反思如下:

等式的认识是学习方程的一个前概念,因此,在认识方程之前,我先安排了一个关于“等号”意义话题的讨论。出示如:2+3=57+2=4+5,这两个题中“=”分别表示什么意思?2+3=5这个题中“=”表示计算结果,而7+2=4+5表示是一种关系,让学生对等号的认识实现一种转变,从而为建立方程埋下伏笔,也体现了思考问题着眼点的变化。但在实际教学中,由于我临时改变思路,根据课件天平左盘放着20千克和50千克的物体,右盘放着70千克的'物体,学生列出算式20+50=70,我就问这个等号表示什么意思?由于这个算式有了天平具体的直观形象,学生一下子过渡到等号表示一种关系。我想让学生体会等号从表示一种过程过渡到表示一种关系,但课后我反思没有必要,以前学生已经知道等号表示一种过程,本节课主要让学生认识到等号还表示一种关系,为建立方程打下基础,所以,当学生已经在天平直观形象中认识到等号表示一种关系,就可以往下进行。所以,这个环节浪费了时间,同时我认识到课前每个环节都要慎思。

新授环节是本节课的核心环节。我让学生以讲故事的形式生动讲解每幅图的意思,让学生经历认识方程的过程,力求让学生在愉悦的氛围里深刻的思考中,体验方程从现实生活中抽象出来。从而列出方程并认识方程。但我认为这还不够,还要对方程的内涵和外延要有更深层次的理解。于是我安排了以下4道习题:

第1题:下面这些式子是方程吗?

x×2-5=100y-2=35()+3=5苹果+50=300

通过这些习题的训练,让学生明白方程中的未知数可以是任何字母,可以是图形,也可以是物体或者画括号等。让学生体会到其实方程在一年级就已经悄悄地来到了我们的身边,和我们已经是老朋友了,只是在一年级我们没有给出它名字,()+3=5就是方程的雏形。

课后我反思这一环节应该增加一些不是方程的习题,如:2x-3>62x+9让学生在各种形式的式子中辨别方程会更好些。

第2题,出示天平图,左盘放着一个160克的苹果和一个重x的梨,右盘放着240克砝码,你能列出方程吗?很多学生列的方程是160+x=240,我就出示240-160=x这个式子是方程吗?让学生在思辨中明晰,它只有方程的形式而没有方程的实质,进一步明白方程的定义中“含有”未知数指的就是未知数要与已知数参加列式运算,从而进一步理解方程的意义。

第3题,出示了天平图,左盘放着250克砝码,右盘放着一个重a克和b克的物体,让学生列方程。通过此题的训练,学生知道了方程中的未知数可以不只是一个,可以是两个或者更多个。方程的内涵和外延逐渐浮出水面。

课后我反思,通过此题的训练,也应该让学生明白不同的数用不同的未知数表示。

第4题,一瓶800克果汁正好倒满5小杯和容量300克的一大杯,现在没有天平还有方程吗?

生1:800=300+5x

生2:800=300+y

师;为了不让别人产生误会,要写上一句话,写清x、y分别表示什么。

这样为以后学习列方程解决问题打下基础,会减少漏写设句的几率。也让学生明白,没有天平要想列出方程,要在已知数与未知数之间建立起等量关系。

本节课我以等式入手建立方程的概念,以判断方程为依托,让学生进一步理解方程的意义,以解决问题为抓手,让学生产生矛盾冲突,深刻体会“含有”未知数的真正含义,从而理解方程的意义,在层层递进的练习中加深对方程意义的理解。整个教学过程为学生提供了丰富的感性材料,使学生在一种思辨的状态中体验到方程是表达等量关系的数学模型,又为学生的后续学习列方程解决实际问题做了很好的铺垫。

《方程的意义》教学反思简单篇三

《方程的意义》这一课的教学。难点是区分“等式”和“方程”,为突破这一难点我这样设计了这节课的教学过程。

新课前进行三分钟口算。上课开始进行简单的小游戏:把粗细均匀的直尺横放在手指上,使直尺平衡。通过这一简单的小游戏使学生明白什么是平衡和不平衡,以此使学生能明白在方程意义教学过程中什么是相等关系,天平中的平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。虽然整个教学任务是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清。

本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的.意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数x的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出数量关系式,用含有x的等式表示数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我们还要注意将“等式”和“方程”进行直接对比。以使学生理解和区分“等式”和“方程”。口算题引入铺垫后,要再回过头来充分利用。在讲完“等式”和“方程”后再回到口算题上,将口算题通过变化由等式到既是等式又是方程,这样进行对比使学生弄明白“等式”和“方程”的关系。

《方程的意义》教学反思简单篇四

《方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。

《方程的意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结合这节课,谈谈我在教学中的做法和看法。

该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。

本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:

等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。

在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。

“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的.本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。

当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方1

在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。

本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会。

《方程的意义》教学反思简单篇五

《方程的意义》这一课的教学。难点是区分“等式”和“方程”,建立方程的数模模型在脑中。

事先我曾经试教用天平来为学生建立等式模型,效果比较好,后进生也能理解方程的意义,但是会出现使用方程的过程中,经常会产生误差,学生就经常误解方程是不相等的。

为了解决这一误解我就尝试着用跷跷板做游戏来让他们感受同等的等量关系,用文字来陈述第三种情境,让他们感受到大于、小于、等于关系。学生的兴趣此时如我所料确实比较高,可是我忽视了后进生,用这三种情境太过于抽象,让基础薄弱的学生不一定能立马反应过来。经过万主任的点拨,我好好的思考后我觉得应该给他们把天平和跷跷板同时呈现,用形象的.图片呈现三种情境,他们的数模才会更容易建立。

第二环节的巩固新知识时候,我让学生小组讨论被墨汁挡住的式子是否是方程时候,我回头想想我有点操之过急,我应该让他们先从基础的辨析后再来做这题,然后渗透集合思想让他们区分方程,这样这题的回答可能会更加的出彩。

第三个知识深入时候,看图列式我也应该更加明确告知学生式子的要求。也就是因为前面的起点太高,所以一些后进生把题意理解错误,使答题不够准确。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,调动了学生的学习热情,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我应该注意后进生,尽量多多从基础出发,注意帮助学生建立数学模型,更要把数学思想时刻灌输的课堂中。

《方程的意义》教学反思简单篇六

师出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板)。

师:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?

教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。

师:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?

学生回答后,老师一一演示验证。

师:想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?

生:平衡

在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a—a=2b+a—a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)

应用,进一步验证。展示数学书p55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。

师:通过刚才的实验,我们发现了什么,谁来总结一下

生:(1)天平两边同时增加或减少同样的物品,天平保持平衡;

(2)天平两边的质量同时扩大或缩小相同的.倍数,天平保持平衡。

师:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。

生:(1)等式两边都加上或减去相同的数,等式保持不变;

(2)等式两边都乘或除以相同的数(0除外),等式不变。

反思:本节课从看得见、摸得着的天平到抽象的方程,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。本节课巧妙地把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在本环节中为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解。

《方程的意义》教学反思简单篇七

本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:

1.用天平创设情境直观形象,有助学生理解式子的意思

等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

2、对方程的`认识从表面趋向本质

(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。

( 2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。

3在“看”“说”和“写”中体会式子

当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。

《方程的意义》教学反思简单篇八

《方程的意义》是一节数学概念课,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。下面就结合我所执教的《方程的意义》这节课,谈谈在教学中的做法和看法。

回顾教学过程,我认为有如下几个特点。

该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。

本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。

在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的`方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

1、从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生利用算术方法的解题思路,对列方程造成了一定的干扰。

2、对于利用天平解决实际问题虽然较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言,用含有未知数的数量关系表示时,存在困难。

3、我应留给学生足够的时间去思考,而不应该替学生很快的说出答案。

在以后的课堂中,我想首先是在课下的备课环节,重点的知识应重点去备,一定要详实,具体,充分考虑各种可能出现的情况,作到讲出一种,备出十种。备学生有时比备教材更为重要,稍微与学生脱节的备课都会在课堂教学中产生不小的影响。课上表述任务要求一定要具体,每一个形容,都会有不同的理解,学生也会完成到不同的层次上,要清晰,易理解,使学生能够按照要求操作、完成。

《方程的意义》教学反思简单篇九

教学《方程的意义》,我反复研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?

旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。

在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。

课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。

为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。

然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:

一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。

“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的.学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的的能力。

在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。

《方程的意义》教学反思简单篇十

本节课,我利用课件进行教学,课前展示了一架天平,从学生认识天平平衡的特性导入新课,在新事物面前,学生学习积极性非常高,课堂上同学们积极参与,认真思考,提出疑问,顺利掌握了方程的定义。上完这节课我的主要收获如下:

等式是一个数学概念。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。通过天平平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

在对比总结中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,在得到相关式子时,直接引导学生进行对比,分别总结出各自的特征,最后我把方程的式子全部圈了出来,告诉学生,在数学上把这样的关系式叫做方程,让后让学生自己总结方程的概念,学生们很自然就归纳出这一类式子的特征,总结出了方程的概念,在自己的脑海里建立起方程的数学模型。

在学生总结出方程的意义之后,自己列方程,并同桌互相检查,有解决不了的问题全班交流,在交流过程中,学生对方程的理解偏差和用字母表示数含糊的.知识都暴露了出来,通过指名学生发言,学生在争论中逐步明白了相关知识,以前没问题的学生也在讨论中深化了认识。

在建立方程的意义以后,我设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程等题型,体现了层层递进,由易到难、学生参与的很积极,也觉得很有趣。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

这节课存在的问题:

1、对等式与方程的关系突出得不够。对方程的定义中“含有未知数和等式”这两个必要的条件强调不到位,导致学生在选择题时有个别学生把y+24选择为方程。

2、对学生“说”的训练不够,应该给学生更多的表述的机会。

3、自己的课堂语言还不够准确、不够丰富,有待于提高。 经常有人说“课堂教学是一门遗憾的艺术”,只有不断的总结,不断的反思,才有不断的进步,也才能将遗憾降到最低点。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服