函数y=ln(2-x)的定义域为______.
函数y=ln(2-x)的定义域为______.
(-∞,2).
要使函数有意义,必有2-x>0,即x<2.
故答案为:(-∞,2).
考点名称:对数函数的解析式及定义(定义域、值域)
对数函数的定义:
一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。
对数函数的解析式:
y=logax(a>0,且a≠1)
在解有关对数函数的解析式时注意:
在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。
查看答案
单次付费有效 3.99 元
用于查看答案,单次有效 19.99元
包月VIP 9.99 元
用于查看答案,包月VIP无限次 49.99元