当前位置:
网站首页
>
题库
>
记△ABC的内角A,B,C的对边分别为a.,b.,c
题目

记△ABC的内角A,B,C的对边分别为a.,b.,c,已知=ac,点D在边AC 上,BDsin∠ABC = asinC.

(1)证明:BD = b:

(2)若AD = 2DC .求cos∠ABC.

可圈可点用户
2021-06-08 10:12
优质解答

答案


扩展知识

一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。

相关公式

平方和关系

(sinα)^2 +(cosα)^2=1

积的关系

sinα = tanα × cosα(即sinα / cosα = tanα )

cosα = cotα × sinα (即cosα / sinα = cotα)

tanα = sinα × secα (即 tanα / sinα = secα)

倒数关系

tanα × cotα = 1

sinα × cscα = 1

cosα × secα = 1

商的关系

sinα / cosα = tanα = secα / cscα

和角公式

sin ( α ± β ) = sinα · cosβ ± cosα · sinβ

sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ

cos ( α ± β ) = cosα cosβ ? sinβ sinα

tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ? tanα tanβ )

倍角半角公式

sin ( 2α ) = 2sinα · cosα [1]

sin ( 3α ) = 3sinα - 4sin & sup3 ; ( α ) = 4sinα · sin ( 60 + α ) sin ( 60 - α )

sin ( α / 2 ) = ± √( ( 1 - cosα ) / 2)

由泰勒级数得出

sinx = [ e ^ ( ix ) - e ^ ( - ix ) ] / ( 2i )

级数展开

sin x = x - x3 / 3! + x5 / 5! - ... ( - 1 ) k - 1 * x 2 k - 1 / ( 2k - 1 ) ! + ... ( - ∞ < x < ∞ )

导数

( sinx ) ' = cosx

( cosx ) ' = ﹣ sinx

查看答案
可圈可点用户
2021-06-08 15:12
相关题库
下载试题
复制试题

查看答案

限时优惠:
000000
热门

单次付费有效 3.99

用于查看答案,单次有效 19.99元

微信扫码支付

包月VIP 9.99

用于查看答案,包月VIP无限次 49.99元

登录后扫码支付
微信扫码支付
联系客服
终身vip限时199
全站组卷·刷题终身免费使用
立即抢购