当前位置:网站首页 >> 作文 >> 积的变化规律教学反思人教版(5篇)

积的变化规律教学反思人教版(5篇)

格式:DOC 上传日期:2022-12-28 07:18:02
积的变化规律教学反思人教版(5篇)
时间:2022-12-28 07:18:02     小编:zdfb

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

积的变化规律教学反思人教版篇一

6×2= 1280× 4= 320 6×20= 12040× 4= 160 6×200= 120020× 4= 80 我鼓励学生仔细观察,动脑思考,发现规律,让他们把发现的规律说给同伴听,然后全班交流,在交流中鼓励学生用一句话概括出规律。让学生自己经历研究问题的一般方法:研究具体问题——归纳发现规律——解释说明规律——举例验证规律。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随着其中一个因数或两个因数的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。

想归想,设计归设计,但教完这一堂课,留给自己更多的是无尽的思索不满意。在课堂中,为什么学生的兴趣调动不起来呢呢?自己在活动中真正做到组织者、引导者与合作者的作用了吗?学生的自主性充分发挥了吗?学生在经历积的变化规律的发现过程中真切地感受到规律了吗?学生的分析能力是否得到了进一步的提高?一连串的问号在我的脑海中闪过。我静坐下来,对自己这节课进行了细细的回顾与反思。

1、要求不是十分明确。在要求学生观察第一组式子,看看你有什么发现时,由于要求不明确,引导不到位,很多同学都只是关注口算的计算方法,而不是关注因数和积是如何变化的,这里浪费了很多时间。

2、鼓励性语言不到位。这节课的特点主要在一个愉悦的学习环境中进行思考、探索、讨论、发言,但是有些学生还是不敢举手大胆的交流。这部分学生主要是害怕自己说错了,让别的同学取笑。好的数学老师应该善于营造一种成功、快乐的对话情境。教师和学生不仅仅通过语言进行讨论或交流,而更主要的是进行平等的心灵沟通。针对学生不敢举手发言,在以后的课堂教学中要注意多给学生鼓励,多给学生信心,以使学生畅所欲言。

3、在本课教学中,由于本课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。这一点在学生举例验证时表现最为明显。而惭愧的是老师我并没能好好引导。

看来,在课堂上,学生真正主动探索知识的目标并不太容易实现。希望自己在以后的教学中,在同行的帮助下,不断探索,不断改进,不断创新,不断长进。

积的变化规律教学反思人教版篇二

运算定律和有关的规律、性质,是数与代数知识领域中重要的一部分,这些客观存在的一般规律对增强学生对数学的认识,迅速准确解决有关计算问题起着巨大的作用。不仅仅如此,正确的理解和掌握这些规律,还有助于学生形成解决问题的策略,提高学生的数学素养,对学生的终生发展起重要作用。《新课程标准》明确提出了“知识技能、过程方法、情感态度与价值观”三维度目标,就规律教学而言,知识技能目标就是让学生理解和掌握规律,并能运用规律解决一些实际问题;过程方法目标是让学生经历规律的探索过程;情感态度价值观目标是指学生在学生过程中,对数学学习的兴趣、获得知识的愉悦以及由此而产生的良好情感体验。由于这些规律性知识是客观存在的,具有普遍性。因此,让学生机械记忆,再经过强化训练,学生同样可以掌握。而这样的话,数学的枯燥、乏味体现得淋漓尽致,学生除了掌握这些味同嚼醋的知识外,别无所获。而如果让学生经历发现规律的过程,学会科学的探究方法,学生同样能达到知识技能目标,同时产生愉悦的情感体验。显然,这种知识的获得是学生通过科学的方法自主探索出来的,既印象深刻,又生动活泼。这才是符合新课改理念的规律教学。因此,我个人认为:规律教学的重点应该放在过程方法上,要让学生经历从特殊现象中发现一般现象,进而总结概括出一般规律的过程。在这一过程中,教师要教给学生科学的探究方法,并力求形成一种数学模型,能运用这种数学模型,自主探索,掌握知识,获得体验。

《商的变化规律》是学生在掌握了两位数除多位数的基础上,进一步学习除法中被除数、除数变化引起商变化的规律。这对加强学生对除法的理解,形成解决问题的策略至关重要。教材先让学生通过计算发现被除数扩大或缩小、除数不变以及被除数不变,除数扩大或缩小引起商变化的规律,然后提出问题:如果被除数和除数同时变化,商会怎么变化?意图让学生综合运用刚才发现的规律,自主探索出“被除数和除数同时扩大或缩小相同的.倍数,商不变”的规律。按照这样一种编排理念,杨老师在一开始就通过一个帮幼儿园老师购物这样一个情境,先让学生直接感知被除数不变,除数扩大或缩小,商反而缩小或扩大的现象,然后让学生计算200÷2=200÷20=200÷40=,然后通过观察、比较、猜测、验证等一系列活动,得出“被除数不变,除数扩大或缩小几倍,商也缩小扩大或相同的倍数”。接着让学生根据16÷8=2160÷8=20320÷8=40这一组除法算式,用同样的方法得出“除数不变,被除数扩大或缩小几倍,商也扩大或缩小相同的倍数”。对于这两个规律的获得,杨老师不是简单讲授,而是有层次的,其中渗透了科学的探究方法。对于第一个规律,杨老师通过示范给学生展示了“计算---观察----比较----猜测----验证-----结论”的探索过程。对于第二个规律,杨老师采用的是引导学生运用刚刚获得的探究方法,发现规律。这一过程,其实是对形成科学方法的一次强化,促使学生形成一种探究模型。在此基础上,杨老师又创设了一个孙悟空分桃子的情境,并将之归结为三个算式:8÷4=216÷8=280÷40=2,并抛出了一个问题“如果被除数和除数同时发生变化,商会怎样变化呢?”激发学生的学习热情,并杨老师又提出要求:能不能用刚才我们掌握的方法,发现商变化的规律呢?就这一过程而言,杨老师很好地体现了教材的编排意图,并创造性地渗透了探究方法的指导,使学生在掌握知识技能的同时,学会了科学的探究方法,形成了解决问题的策略。

但细思量本节课的三个环节,就其知识难易程度而言,前两个规律是商不变性质的铺垫,商不变的性质应该是重点,也是难点。因为它牵涉到了被除数和除数同时发生变化,而这种变化还是有条件的,同时扩大或缩小相同的倍数。而杨老师的课堂教学虽然也体现出了教材的编排意图,也力求体现探究方法的渗透,但总有平均用力的感觉。我个人认为,前两个规律既然是第三个规律的铺垫,那么在探究方法的渗透上也应该成为第三个规律的铺垫。我们可以做以下设想,第一个规律,杨老师给学生示范展示“计算---观察----比较----猜测----验证-----结论”的过程,适当加以总结强化,让学生初步了解这种科学的探究方法。在探索第二个规律时,就应该适当放手,教师可以引导学生运用刚才的方法去探索规律,应该说是形成初步的数学模型。而在学习商不变的规律时,教师就应该把探究的机会完全放给学生,明确提出让学生先观察,发现谁变了,是怎么变化的?谁没变?由这个特殊的现象提出自己的猜测,然后再举例验证,最后得出一般的规律。相信这种放手让学生根据已有的数学模型,自主探索商不变的规律的做法,学生肯定兴致盎然,劲头十足。能自始至终以一种饱满的热情投入到学习中去,同时获得良好的情感体验。

对于规律教学,我也曾做过一些尝试,并就此写过一篇教学反思《教给学生有营养的数学》,现在拿出来,供老师们参考指正:

所谓有营养的数学,就是在学生学习数学知识的过程中获得终身可持续发展所需要的基本知识、基本技能、数学思想方法、科学探究态度及解决实际问题的创造能力。教给学生有营养的数学,就是说在课堂教学中,教师要让学生在观察、实验、猜测、验证、推理等数学活动中,经历数学化的过程,并在数学化的过程中渗透数学思想方法和学习方法培养,使学生能用数学的思维方式去观察、分析现实社会,解决实际问题,形成终身学习的能力,促进个体的可持续发展。

?乘法的交换律和结合律》以加法的运算定律为基础,在意义和表述上和加法的运算定律有相似之处,学生完全可以把加法的运算定律迁移到乘法的运算定律上。这里,知识技能目标很容易达到,于是,我就把本节课的重心放在过程与方法上,下面是课堂实录:

1、复习加法的运算定律

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

师:这里a和b是什么数?

生:a和b表示加数

师:a和b可以表示什么数?

生:任何数。

师:这就是说,只要交换两个加数的位置,和一定不变;先把前两个加数相加或先把后两个加数相加,和也不变。

2、探索乘法的交换律。

师:将a+b=b+a中的加号改为乘号,问:现在a和b变成了什么数?

生:a和b表示因数,

师:那么,请同学们猜一猜,交换两个因数的位置,积相等吗?

生1:相等。(90%的学生举手同意)

生2:不相等。(10%的学生举手同意)

师:很好。那现在认为积相等的同学组成一组,认为积不相等的同学组成第二组。拿出练习本和笔,举例证明你的猜测是否正确,并把结论写出来。

学生自主证明,师巡视。

师:现在请第二组同学推举一名代表上来汇报你的结论。

生:我起初认为交换两个因数的位置,积不相等。为了证明我的猜测是正确的,我举了一个例子:2×3,交换两个因数的位置后变为3×2,结果都是6。和我的猜测相反,说明我的猜测是错误的。我的结论是:交换两个因数的位置,积不变。

师:第二组的同学有没有不同意见?说出你的结论。

生:没有。

师:第一组同学有意见吗?

生:没有。

师:很好。那就是说,交换两个因数的位置,积不变,这就是乘法的交换律。

师:回顾小结:刚才我们根据交换两个加数的位置和不变,提出了猜想交换两个因数的位置积可能相等,可能不相等。为了验证我们的猜测,同学们举例证明了自己的猜测,得出了正确的结论:交换两个因数的位置,积不变。这里猜测的对与错并不重要,重要的是通过举例验证,无论猜测是否正确,我们都能得到正确的结论。看来,提出猜想,然后去验证,最后得出了正确的结论确实是一个好办法。

3、自主探索乘法的结合律。

师:下面我们就用刚才学到的方法,自己提出猜想,在练习本上举例验证,看一看(a×b)×c=a×(b×c)成立不成立。

生:自主探索。

师:谁愿意上来汇报自己的结论?

生:我认为(a×b)×c=a×(b×c),我举了一个例子:2×3×4,结果是24,2×(3×4),结果也是24。说明(a×b)×c=a×(b×c)。我的结论是:先把前两个因数相乘,或先把后两个因数相乘,积不变。

师:有没有不同意见?说出你的结论。

生1:我的结论是交换括号的位置,积不变。

师:括号起什么作用?

生:改变运算顺序。

师:那交换了括号,运算顺序变化了吗?是怎样变化的?

生:交换括号以后,本来先算前两个因数,现在要先算后两个因数。

师:对。这就是说等号左边是先把前两个因数相乘,等号右边是先把后两个因数相乘。积不变。同意吗?

生:同意。

(学生还出现了许多不同的说法,但意思相同,教师一一肯定,同时加以规范)

师:很好。通过我们的努力,我们知道了先把前两个因数相乘,或者先把后两个因数相乘,积都不变。能给它起个名字吗?

生:乘法结合律。

3、课堂练习

师:请同学们打开课本,齐读小精灵与一个学生的对话。

生:(齐读乘法交换律和结合律。)

师:谁能改动乘法交换律中的两个字,就把它变成加法交换律?

生:把因数变为加数,把积变成和。

师:很好。谁能只改动两个字,把乘法结合律变成加法结合律?

生:把“因”改为“加”,把“积”变成“和”。

师:太有才了。

4、全课总结(略)

本节课,学生始终处于探索的兴奋之中,满怀激情投入到自主探索之中,并从中享受到了成功的快乐。特别是让学生在练习纸上写出自己的结论,正是促进学生思考的有效方式,因为只有动笔,才有真正的思考。只有真正的思考,学生才有所得。事实证明,当堂测试中所有的同学都掌握了乘法的交换律和结合律,并能根据乘法的交换律和结合律完成一些相关的练习。本节课的可取之处在于,学生在自主探索乘法的交换律和结合律的过程中,尝试了科学的学习方法,经过老师的提升,形成了一个认知模型:认真观察――提出猜想――进行验证――得出结论,做为一种数学能力,对学生以后的学习很有帮助。

积的变化规律教学反思人教版篇三

《积的变化规律》是人教版教材数学四年级上册第3单元的内容。在以前计算的过程中就已经初步感悟过,但是没有总结成规律,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。

“探索规律”是数与代数领域要教学的主要内容之一。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我引导学生通过观察、口算、计算、说理、交流等活动,归纳出积的变化规律。并会用数学语言刻画这个规律,感悟函数的思想方法。同时,让学生通过观察、比较、分析、概括、等思维活动体验归纳规律的方法,从面获得一定的价值体验。

1.引导学生经历规律发现的过程,让过程在孩子的经历中变得清晰。教学中要让学生充分经历规律的发现过程,把发现的过程细化、广泛化,让每个学生都参与。在起初的观察里思维灵活的学生尝试说出“两个数相乘,一个因数不变,另一个因数乘几,积也乘几”,接着引导学生理解“也”的含义,强化“一个因数不变,另一个因数和积的变化是相同的”。在这里学生的已有水平已经达到了初步认识“积的变化规律”,接下来让学生举例,深化规律。这个过程,让学生感悟到规律的得出要经过探索、猜想、验证,归纳。培养了学生各方面能力。

2.体验成功,让每个孩子都有所收获。每个孩子都期待成功,每个孩子都能成功,数学要让不同的人得到不同的发展。在教学中让每个孩子都参与在举例子的过程中,举不同的例子来验证规律,运用规律,这个过程就是学生消化知识、运用知识的过程,孩子在数学活动中得到了成功的喜悦。

3.体会快乐的同时感受数学的严谨性。数学和其他学科不同,它是一门逻辑性非常强非常讲究严谨性的学科,因此在教学中要注意特点,突出教学的严谨性。这节感受数学严谨性就是渗透在各个环节。比如发现了“两个数相乘,因数乘几,积也乘几”再让学生说说理解;老师也展示自己的想法与学生的想法产生冲突;这些都是数学严谨性的体现。

教学第一个规律时,呈现的材料太少,让学生一下子由初步的感悟总结提炼规律,不符合学生的认知规律。应该在初步感悟的基础上让学生尝试举例,再去总结提炼,这样既加深学生的理解,也符合认知规律。

积的变化规律教学反思人教版篇四

苏教版义务教育课程标准实验教科书数学四年级(下册)p83例题,p83-84“想想做做”。

1、使学生借助计算器的计算,探索并掌握“一个因数不变,另一个因数乘几,得到的积等于原来的积乘几”的变化规律。

2、使学生在利用计算器探索规律的过程中,经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得探索规律的经验,发展思维能力。

3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的价值,逐步形成良好的与他人合作的习惯和意识。

4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。

一、游戏引入:

用计算器玩游戏

要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。

【意图:计算器作为探索的工具并以游戏方式载入一是有利于激活学生熟练运用计算器的能力,同时对游戏中隐含的规律产生好奇,为后继进一步运用计算器探索规律做好心理上的准备】

二、揭示课题:

1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)

2、看了这个课题,现在你最想了解的是什么?通过交流让学生感受到三个方面:①什么规律? ②怎样研究? ③有什么用?

【意图:一开始提出探索的目标有利于学生明确探索的内容和方向,把重点集中到探索和发现规律上来,本课的着力点自然地凸现了出来。】

三、探索规律

(一)建立猜想

1、用计算器计算:36×30的积。

2、36、30在这个乘法算式中叫做什么?1080又叫做什么?

3、猜想:如果其中的一个因数不变,另一个因数乘一个数,得到的积可能会有什么变化呢?比如,一个因数36不变,把另一个因数30乘2,或者把30乘10,积会有什么样的变化呢?再比如,一个因数30不变,另一个因数36乘8,或者乘100,积又会有什么样的变化呢?能不能来猜一猜?

积的变化规律教学反思人教版篇五

有效教学是预设与生成、封闭与开放的统一体。教师在教学中应该“提倡生成”,并能够“驾驭生成”,让学生的问题带着我们的课堂自由飞翔。

提出一个问题比解决一个问题更重要,给学生营造一个和谐的数学课堂,让学生的思维尽情释放!课堂教学不仅是知识传递的过程,也是师生情感交融,人际交往、思想共鸣的过程,创设一种师生心理相融、民主交往的良好的课堂气氛无疑是课堂问题的最好催化剂。只有学生不怕了,学生才会站起来提出他们脑中一直盘旋着的问题。不怕,包括“不怕老师”,对老师的权威敢于提出质疑,敢于表达自己心中的想法;“不怕教材”,对教材的一些观点能够提出自己的看法,即使可能观点存在着错误性;“不怕同学”,很多学生的心理有一种疑问:“我的问题的提出会不会遭到同学们的耻笑?”;“不怕自己”,打断老师的课堂,提出自己的问题是需要多么大的勇气?!学生所能做的就是战胜自己胆怯的心,把信心成功的刻入自己的心里。只有这样课堂才会活跃,学生的问题会接踵而至。由于在平时的教学活动中,我适时鼓励学生敢于在课堂上张扬自己的个性,不怕说错,就怕你不说。在本节课上,学生大胆发言,有一个新的知识点生成出一个又一个知识点。

传统教学中,教师思考最多的是教师如何地牵、如何地引、如何地讲清楚、讲明白。教师扮演着不可替代的、绝对权威的角色,教师成了学生学习结果的惟一的评判者。在教师的眼里,学生是知识的接受者,只要认真听、认真看、认真记,顺着教师预先设计的教学思路学习就可以了。因此,所有的教学过程都在教师的控制之中,甚至问题答案都是教师设计好的,这种教学看起来学生是“动”起来了,“参与”了,其实质是学生顺着教师的设计、顺着教师的教学思路、顺着教师的期望,进行教师心中有数的“表演”。最终是学生完成教师预定的教学任务。这种只重预设,忽视生成的理念是传统备课的一大弊端,必须引起我们高度重视和关注。教学过程不可能都是预设的,由于学生存在着差异,因此,问题的答案也不应该是惟一的,教学应该是“预设”和“生成”的有机整合,忽视了教学的生成性,就忽视了学生的差异,忽视了学生的发展。 “凡事预则立,不预则废”,没有预设的生成往往是盲目的,低效的,甚至是无价值的。生成,不是对预设的否定,而是对预设的挑战精彩的生成源于高质量的预设。

苏霍姆林斯基说过“教育的技巧并不在于我能预见到课的所有细节,在于根据当时的具体情况,巧妙地在学生不知不觉之中做出相应的变动。”在本节课上,由于课前我进行了充分的预设,当学生运用已发现的规律去解决新的问题是时,我及时地加以肯定,并适时地加以引导。在老师的肯定与鼓励中,孩子们由此生成出更多的数学问题,并能自己去发现。其实在教学中我们只要到:心中有案,行中无案,寓有形的预设于动态的教学中,真正溶入互动的课堂,不断捕捉、判断、重组课堂教学中从学生那里涌现出来的各种信息,随时把握课堂教学中闪动的亮点,样使的教学更具有针对性,为即时“生成”提供更宽阔的舞台,用智慧将教学演绎得更加精彩!

数学课堂上的生成是真实而美丽的,稍纵即逝而可遇不可求的!这就要求我们教师要有拨乱反正的胆识,要有取舍扬弃的智慧,及时捕捉一些有用的问题,顺势引导,让有价值的资源渐入佳境,别有洞天;让看似平常的资源,峰回路转,柳暗花明;

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服