在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
《工程问题》说课稿篇一
《工程问题》这部分内容是九年义务教育小学数学第十一册第三单元分数、小数应用题的最后一部分内容。它是学生在学习了整数工程问题的基础上进行教学的。这类应用题是用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。它的解题思路与整数工程问题基本相同,只是题中没有给出具体的工作总量,解题时要把工作总量看作“单位1”,用单位时间内完成工作总量的几分之一表示工作效率。由于计算的不是具体的数量,学生往往感到抽象、不易理解。
我根据教材内容和学生特点确立以下教学目标:
基础知识目标: 使学生认识工程问题的结构特点, 掌握它的数量关系、解题思路和解题方法,并能正确解答工程问题的基本题。
基本技能目标: 初步培养学生的分析概括能力和迁移类推能力以及运用所学知识解决实际问题的能力。
情感目标:通过课堂教学中引用家乡的汤山公园、杭州湾大桥建设等大量图片,渗透学生爱家乡、爱祖国的教育。
教学重点: 工程问题的结构特点、解题思路和解题方法。
教学难点: 理解用“单位1”表示工作总量,用单位时间完成工作总量的几分之一表示工作效率。
由于工程问题比较抽象,学生难以理解,因此我将“学生为主体,教师为主导,训练思维为主线”的原则贯穿教学始终,采用尝试、发现相结合的方法,充分调动学生的.积极性。主要采用以下两种教学方法:
1、发现自学法:这种方法主要是培养学生的发现意识和能力。在引导学生探讨问题的过程中,教师要循序渐进,帮助学生找到正在探讨的问题和已经知道的问题之间的联系,引导学生发现新问题,鼓励学生独立解决问题,养成主动发现新问题的习惯。这节课前我让学生做了三道整数工程问题的应用题,使学生发现整数工程问题的结构特点和解题思路,发现“为什么这三道题的工作总量分别是120亩、20亩、1亩而用的工作时间相同呢?”进而引入分数工程问题,把前三道题的工作总量去掉,还能不能解答?让学生尝试练习,进一步发现和掌握分数工程问题的结构特点和解题方法。这样循序渐进,既缓减了教学的坡度和难度,又使学生能理解掌握分数工程问题的解题思路和解题方法,便抽象思维为具体形象思维。
2、联系生活教学:在本课中围绕一条主线;即汤山公园绿化展开教学,汤山 公园为学生所熟知,在教学中通过对公园绿化的不同陈述,展示了不同工作情景下关于绿化的工程问题,通过学生的练习,让学生感悟了公园的美景,。在联系中明白 把一项工作、修路、运货等全部的工作量看作单位“1”,也逐步把握了工程问题的特点,及其数量关系。
在教学中,把着眼点放在对学生的学法指导上,使他们在获取知识的同时,掌握良好的学习方法,体现学生的主体作用。课堂上引导学生发现问题、解决问题、总结规律,使学生能主动获取知识。本节课注重培养了学生的迁移类推能力和分析问题、解决问题的方法。
这节课按照“发现问题──解决问题──总结规律”这样几个程序进行:
1、复习铺垫:复习与新课内容紧密联系的旧知,为新课的学习做好必要的、充分的准备。
2、课前让学生做了整数工程问题的应用题,引导学生发现工程问题的解题思路和解题方法,然后引入分数工程问题,让学生尝试练习,发现规律,进一步类推出分数工程问题的解题思路和解题方法,变抽象为具体。
3、练习巩固:运用所学知识解决实际问题,有基本练习、变式练习、深化练习。
4、全课总结:对本节内容进行简明扼要的总结,使学生对本节内容有一个整体认识,起到画龙点睛的作用。
5、布置作业。
《工程问题》说课稿篇二
1、教学内容:
责任教育六年制小学数学第十一册第79页例9、练习二十。
2、教材简析。
“工程问题”是研讨工作总量、工作效率和工作时间三个数量之间关系的一个数学问题。它的解题思路与整数工作问题的思路相同,仍是工作量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率,这是工程问题的基本特点。从教材安排上看,由筹备题、例题、做一做和巩固练习的构成,题量较大,不仅要求学生能求工作时间,还要能求部分工作量。教好这部分知识,不仅可以训练学生的剖析、综合、抽象、概括等思维能力,而且可以提高学生综合运用知识能力。
3、教学目的
(1)使学生了解工程问题的构造特点,控制工程问题的解题方法,学生解答比较简略的工程问题。
(2)在教学过程中培育学生尝试、探究、猜测、合作交换等能力,渗透数学的利用意识。
4、教学的重点、难点和症结:
(1)、教学重点:
控制工作问题的构造特点和解答方法。
(2)教学难点:
为什么将工作总量抽象为单位“1”,建立工作总量与工作效率的对应关系。
(3)教学症结:
控制工程问题的基本数量关系,会迁移运用,组建新的认识构造。
老师创新教学的平台,介绍教育及教学研究前沿动态,讨论当前我国基础教育课程实践研究和理论研究中的各类课题和观点,探索最佳学习之方法,交流个人学习的心得,关注中小学课程教与学,关注网络平台教学、教学新技术。
1、在教法上重要是采用引导发现法,通过教师适时地“引”来激发学生自动地“探”,使师生双边活动发生共识,协调发展。创设情境,提供生活化的学习材料,亲密与现实生活的接洽,激发学习动机,引导学生积极自动地参与,从而培育数学意识。关注学生的自主摸索和合作交换,让学生经历“问题—探究—利用”的学习过程。
2、在学法上要激励学活泼手、动口、动脑,在活动中学习数学,在活动中善于抓住新旧知识的连接点,自动构建数学知识,逐步由“学会”向“会学”改变,充分体验成功的喜悦。
1、复习铺垫
出示两道复习题,让学生答复后,概括出基本数量关系:工作总量÷工作效率=工作时间。
2、探究新知
(1)让学生弄清题意,理解数量关系。
(2)独立思考,学生自己列出算式。
(3)合作交换。在独立思考、自主摸索基础上,组织学生进行合作交换,学生要充分展示解题思路。①30÷(30÷10+30÷15)②1÷(-+-),学生进行讨论,把“长30千米”去掉,又如何解答?把题中谁看单位“1”?甲乙队的工作效率又怎样表示?根据什么数量关系列式?让学生共同辅助来发现工程问题的解题方法。
(4)反馈评价。
(1)完成“做一做”。
(2)练习二十第1题。
学习这节课有什么收获?在生活中还有哪些相似工程问题的实际问题?让学生寻找生活中的数学问题解决问题。
《工程问题》说课稿篇三
工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。
教学重点是:掌握工程问题的数量关系和解答方法。
难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。
现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。
教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。
根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。
第一环节是复习铺垫。
由于用分数解工程问题与整数解工程问题的思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。(2)如果这项工程每天完成 ,( )天完成。巩固了旧知,为学习新知作好铺垫。
第二环节是学习新知识,分三步进行。
第一步:加深对整数解工程问题的数量关系的理解。
出示:三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成?
引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。
第二步:探究用分数解工程问题。
这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。
第三步,比较分数解和整数解工程问题,加深印象。
比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。
第四环节是练习、巩固。
练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。
工程问题应用题
教学目标:
1、 了解工程问题的结构特征及数量关系,学会解答比较简单的工程问题。
2、 在主动参与、发现和揭示数学原理和方法中提高思维水平。
教学流程
一、复习铺垫
1、谈话:
同学们,我们学校准备在明年暑假把操场上的跑道改造成塑胶跑道。你见过塑胶跑道吗?它有什么优点?但铺塑胶跑道需要很多钱,还需要专业的施工队。
2、出示:
(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。
(2)如果这项工程每天完成 ,( )天完成。
3、揭题:
在日常生活中,像修跑道、造桥、运货、搞绿化等各种工作,我们统称为工程,今天的这节课我们就一起来研究工程问题。
二、探究新知
1、谈话:
如果我们能将修塑胶跑道这项工程进行招标。应聘单位有两个,他们都承诺能保质保量完成任务。但甲工程队单独完成需10天,乙工程队单独完成需8天。
问:(1)如果你是校长,你选择哪个施工队?为什么?
(2)但新学期开学迫在眉睫,为了 同学们在新学期一开学就能在跑道上上体育课,如果你是校长,又该怎么办呢?
2、出示:
三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成。
(1)独立解题 200÷(200÷10+200÷8)= 4 (天)
(2)交流反馈、小结数量关系式:
讨论:200÷10与200÷8各表示什么?这两个商加起来又表示什么?再用200除以它们的和得到了什么?根据什么数量关系算出合作的时间?
板书(工作总量÷工作效率和=合作工作时间)
(3)那如果要修建的塑胶跑道是400米,800米又要多少天时间呢?独立做。
400÷(400÷10+400÷8)=4 (天)
800÷(800÷10+800÷8)= 4 (天)
(4)讨论:三道题做完了,你有什么发现?猜猜如果跑道是1000米的话,用几天时间完成?跑道长度是a米呢?看来完成工程的天数跟工作重量没多大关系?那么到底为什么工作总量在变化,可完工的时间却一样?
3、出示:
例、三毛小学要修一条塑胶跑道,由甲工程队单独施工需10天;由乙工程队单独施工要8天完成。两队共同施工需要多少天完成?
(1)分析思考:a、工作重量不知道怎么办?
b、甲工程队的工作效率是多少?怎样想出来的? 乙工程队呢?
(2)怎样列式。(尝试)。
(3)交流说说 。1÷( + )中。 、 各表示什么? + 又表示什么。“1”