当前位置:网站首页 >> 作文 >> 九年级下册数学优秀教案优质五篇

九年级下册数学优秀教案优质五篇

格式:DOC 上传日期:2022-08-25 14:32:03
九年级下册数学优秀教案优质五篇
时间:2022-08-25 14:32:03     小编:HLL

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

数学九年级上册优秀教案 篇一

教学目标

1、使学生掌握百分数、小数互化的方法,并能正确的互化。

2、在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。

3、在学习的过程中培养学生的分析思维和抽象概括能力。

教学重难点

使学生理解掌握百分数和小数互化的方法。

教学工具

课件

教学过程

一、活动(一)复习准备

1、课件出示复习题。

张宇跳绳个数是陈聪的1.37倍。

王志祥跳绳个数是陈聪的6/5.

刘星宇跳绳个数是陈聪的137.5%。

思考:这三个人谁跳得最多,怎么比较?

2、引入新课。

在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?

这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

二、活动(二)百分数和小数的互化。

(1)回忆小数化分数的过程。

(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

三、活动(三) 百分数化成小数

1、例1:把0.25,1.4,0.123化成百分数。

①小数化百分数分几步进行?

②学生回答,教师板书:0.25=25/100=25%

③1.4怎样化成分母是100的分数?根据什么?

④“做一做”:把下面各小数化成百分数。

0.38 1.05 0.055 3

⑤观察例1的各小数,化成百分数后发生了怎样的变化?

你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?

⑥现在你能很快地把下列小数化成百分数吗?(口答)

2.5 0.785 0.16

2、例2:把27%,135%,0.4%化成小数。

学生自己试做,学生总结方法

①说一说百分数化小数的方法。

②观察百分数化成小数发生了什么变化?

③把下面各百分数化成小数

15% 80% 3.5%

3、小结。

通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

四、巩固与提高

1、P80“做一做”

2、练习十九的第2题

五、作业

练习十九的第1题

课后习题

练习十九的第1题

教学问题诊断分析 篇二

一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升。学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念。

培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的。

本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫。

本课的教学难点是一元二次方程的概念。

数学九年级上册优秀教案 篇三

教学目标

1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重难点

教学重点:理解比的基本性质,掌握化简比的方法 。

教学难点:化简比与求比值的不同。

教学过程

一、创设情境,生成问题

师:同学们,昨天我们刚刚学习了有关比的意义,谁能说说

1、什么叫比?

2、比与除法和分数有什么关系?

(生自由发言)我们以前还学过了分数的基本性质和除法中的商不变性质,还记得吗?谁来说一说?

课前准备:

同桌互相说一说:

1、除法中商不变的性质是什么?你能举例说明吗?

2、举例说明分数的基本性质。

二、探索交流,解决问题

1、猜测比的基本性质

除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比有没有基本性质?如果有,这条基本性质的内容是什么?(学生猜测,并相互补充)

2、验证猜测:学生以四人小组为单位,讨论研究。

汇报(预设):

① 6&spanide;8=(6×2)&spanide;(8×2)=12&spanide;16

6:8=(6×2)∶(8×2)=12:16

6:8=(6&spanide;2)∶(8&spanide;2)=3:4

6&spanide;8=(6&spanide;2)&spanide;(8&spanide;2)=3&spanide;4

② 0.4:0.5=0.4&spanide;0.5=0.8

0.4×5=2 0.5×5=2.5

2:2.5=2&spanide;2.5=0.8

③ (3/4)&spanide;(5/4)= (3/4)×(4/5)=3/5=0.6

3/4×(2/3)=1/2 4/5×(2/3)=5/6

1/2 :(5/6)=1/2×(5/6)=0.6

……

小组派代表说明验证过程,其他同学补充说明。

结论:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。(板书课题)

问:为什么0除外?(生自由回答)

这句话中你觉得哪些字比较重要?

相同的数可以是什么数?

不可以是什么数?

说一说:比的基本性质与商不变性质和分数的基本性质有什么联系和区别?

3、比的性质的应用

① 最简整数比

师:我们在学习分数的基本性质时,利用它化简分数,约分,通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?(生自由发言)

结论:最简整数比就是比的前项和后项都是整数,而且比的前项和后项的公因数是1,这就是最简整数比。

讨论:

怎样理解“最简单的整数比”这个概念?

小组里议一议。

师小结: 必须是一个比;前项、后项必须是整数,不能是分数或小数;前项与后项互质。

② 教学例1:化成最简整数比

课件出示例题,

写出这两面联合国旗的长和宽的比,并化成最简单的整数比。

课件出示例题的两面旗的图,

这两个比有什么关系呢?仔细观察,这两个比的前项,后项是怎么变化的,存在着怎样一个变化规律呢?

生独立解决,小组交流汇报方法。

15∶10

15 : 10=(15&spanide;5):(10&spanide;5)=3:2

想:5是15和10的什么数?为什么要除以5?

180 : 120=(15&spanide;___):(10&spanide;___)=3:2

想:除以什么呢?

这两个比的什么变了,什么没有变?

把下面的比化成最简单的整数比。

0.75:2 1/6 :2/9

三、巩固应用,内化提高

1、看谁的眼睛看得准?(根据比的基本性质判断下面各题)

2、 把下面各比化成最简单的整数比。

应用这个性质可以把一个比化成最简单的整数比?

(1)。需要怎样做才能化成最简单的整数比?

(2)。这样做到底有什么根据?

3、归纳化简比的方法:

(1) 整数比

——比的前后项都除以它们的最大公约数→最简比。

(2) 小数比

——比的前后项都扩大相同的倍数→整数比→最简比。

(3) 分数比

——比的前后项都乘它们分母的最小公倍数→整数比→最简比。

四、课堂小结

通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

五、课后延伸:

有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?

板书设计:

比的基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

教学过程设计 篇四

(一)创设情境,引入新知

教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:

问题1.这个方程属于我们学过的某一类方程吗?

师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名。

【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识。

问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?

师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境。

【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解。部分学生能够独立解决问题,自己[www.baihuawen.cn]编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题。

(二)拓宽情境,概括概念

给出课本问题1、问题2的两个实际问题,设未知数,建立方程。

问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?

教师引导学生思考并回答以下几个问题:

全部比赛共有______场

若设应邀请

个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场。

由此,我们可以列出方程______________,化简得________________.

问题3. 这些方程是几元几次方程?

师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模。将列得的方程化简整理,判断出方程的次数。

【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解。让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习。

问题4.这些方程是什么方程?

师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式。

1、一元二次方程的概念:

等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程。

2、一元二次方程的一般形式是

。其中

是二次项,a是二次项系数;

是一次项,b是一次项系数;c是常数项。?

【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升。

(三)辨析应用,加深理解

问题.请你说出一个一元二次方程,和一个不是一元二次方程的方程。

师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛的参与。追问学生所举的反例为什么不是一元二次方程?是什么方程?

【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:

开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果。

(四)巩固概念,学以致用

教科书第4页: 练习

【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况。

(五)归纳小结,反思提高

请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误。

(六)布置作业:教科书习题21.1

复习巩固:第1,2,3题。

3、将关于

的一元二次方程

化为一般形式,并指出二次项系数。

【设计意图】考查化简方程的能力,及对一元二次方程一般式的掌握情况。

九年级数学上册教案:二次根式 篇五

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤。

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤。

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧。

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0)。

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征。

(2)不能。

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。

例1 用配方法解下列关于x的方程:

(1)x2-8x+1=0 (2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。

解:略。

三、巩固练习

教材第9页 练习1,2.(1)(2)。

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程。

五、作业布置

【九年级下册数学优秀教案优质五篇】相关推荐文章:

八年级数学下册教案全册优质10篇

小学一年级下册数学教学计划【五篇】

小学四年级下册乘法分配律教案优质五篇

五年级数学下册教学计划(人教版优秀

2022年人教版六年级数学下册教案6篇

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服