作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
六年级圆的面积教案人教版1
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
教学过程:
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14102 =314(平方厘米)
②求出内圆的面积:3.1462 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14102-3.1462
=3.14(102-62)
=3.1464
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
六年级圆的面积教案人教版2
教学目标
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重难点及学具准备
教学重点和难点:圆面积的计算公式推导。
教学准备:圆形纸片、剪刀、多媒体课件等。
课前谈话:
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)
教学过程:
一、开门见山,揭示课题
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)
二、第一次探究,明确思路,体会“转化”的数学思想方法
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)
怎样让扇形和三角形的面积接近一些?
现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?
把圆剪成更多份,能让拼成的图形更接近平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)
四、第三次探究,深化思维,推导公式
刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)
五、解决问题
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)
(教师组织交流。)
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12。56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)
六、小结
时间过的很快,一节课就要结束了,大家有什么收获?
我的课后反思
苏霍姆林斯基说过:“在人的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者,研究者探索者”。而在儿童的精神世界中,这种需要特别强烈,本堂课上我通过“圆能否转化成我们学过的图形呢?”“怎样能让转化后的图形与三角形平行四边形更接近呢?”“数学学习不仅需要动手操作,更需要动脑思考,能否在刚才研究的基础上推导出圆的面积计算公式呢?”三个紧密联系又层层递进的问题,激发了学生强烈的探究愿望,因此,引发学生的学习兴趣,在这激励的作用下,学生们根据自己的知识经验,自主探究,交流合作,大胆尝试用自己独特的方式去解决问题,教师没有把自己的意图强加于学生,而是充分满足学生的探究需要,整节课在充分尊重学生思维发展的过程中,教师适时的加以引导、点拨,使学生学习的方向始终清晰明确,在探究的过程中,学生思维活跃,争相交流,不断迸发出创新思维的火花,真正体会到了数学探究的魅力!
六年级圆的面积教案人教版3
教学内容:
圆的面积。
教学目标:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计
:一、复习旧知,导入新课
1、前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2、课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3、出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1、回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2、推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r S=πr2师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3、利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1、求下面各圆的面积,只列式不计算。(CAI课件出示)
2、测量一个圆形实物的直径,计算它的周长及面积。
3、课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的面积即圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1、第97页的第3题和第4题。
2、找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
六年级圆的面积教案人教版4
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
学生回答,教师予以肯定。
2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1、教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积/
圆的半径/
圆的面积/
圆面积大约是正方形面积的几倍
(精确到十分位)
2、交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的兀倍。
3、教学例8。
(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?
(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?
初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,教师板书
长方形的面积一长×宽
圆的面积=
(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
4、教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转_器?
(2)想象一下自动_器旋转一周后喷灌的地方是什么图形,_的最远的距离是什么意思。
(3)学生独立完成计算。
(4)集体交流。
5、教学例10。
(1)请同学读题,解读题意。
(2)找出题中的已知条件。
(3)分析解题过程。
(4)明确各个量之间的转化关系。
三、巩固练习,加深理解
1、完成“练一练”。
(1)学生独立解答。
(2)集体交流。
2、完成练习十五第1题。
(l)学生独立解答。
(2)集体交流。
3、完成练习十五第3题。
(1)学生列式后用计算器计算。
(2)集体交流。
4、完成练习十五第4题。
(1)学生独立解答。
(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。
5、作业:练习十五第2、5题。
四、课堂小结
师:通过今天的学习,你有什么收获?
学生发言,教师点评。
圆的面积
长方形的面积=长×宽
圆的面积=
【2022年小学六年级圆的面积教案人教版优秀】相关推荐文章:
2022年小学数学圆的面积的教案5篇
小学数学圆的面积教学设计2022年
圆的面积优秀教学设计意图5篇
2022年圆的面积教学设计方案9篇
圆的面积教学设计一等奖7篇