无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
乘法分配律全国一等奖教案一
教学内容:课本26页例7
教学目标:
1.让学生通过观察、交流和归纳等数学活动,发现并理解乘法分配律,掌握乘法分配律的特点,区分乘法分配律和乘法结合律的不同。
2.经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。
3.进一步体会数学与生活的联系,培养学生应用数学的意识和解决问题的能力。
教学重难点:
重点:发现并理解乘法分配律,掌握乘法分配律的特点。
难点:乘法分配律意义的理解及应用。
教学过程:
一、初步发现乘法分配律
课前导学:
1.一共有25个小组参加植树,每组里有4人负责挖坑、种树,2人负责抬水、浇水。一共有多少人参加这次植树活动?
2.学校买来45盒彩色粉笔和155盒白粉笔,每盒40支。一共有多少支粉笔?
3.一套运动衣上衣75元,裤子45元。李阿姨购进了60套这种这种运动服,花了多少钱?
根据学生的回答板书三组等式:(4+2)×25=4×25+2×25
(45+155)×40=45成×40+155×40
(75+45)×60=75×60+45×6
二、分析乘法分配律的特征
1. 问题:你能写出同类型的等式吗?
学生仿照教师所板书的等式,写出同类型的等式。
2.学生独立仿写。
3.随机抽人回答。
4.问题:你怎么判断这些等式是相等的?(重点引导学生从乘法的意义来理解)
思考等式相等的原因,分析等式的特征。
三、巩固练习(一)
1.在平板上完成练习题,并提交。
2.分析每道题对错的原因。
四、理解乘法分配律的意义
导语:刚才我们发现的规律在数学中叫做乘法分配律,请大家自己看书上第26页内容,看看规范的表述语是什么,同时把字母表达式补充完整。
1.学生自己看书,划一划什么叫做乘法分配律,并补充字母表达式。
2.结合具体等式用规范的语言表述乘法分配律。
五、巩固练习(二)
1.在平板上完成练习题,并提交。
2.比较具体算式,找出乘法分配律与结合律的不同。
思考:乘法分配律与乘法结合律有什么不同?
六、新旧知识的联系
问题:回忆一下,以往学过的哪些知识其实就是应用了乘法分配律呢?
1.长方形周长的计算方法
25×12的竖式
七、简便计算
1.问题:这几天我们学习的运算定律都可使计算简便,乘法分配律是不是也有这样的作用呢?下面我们来抢答一道题
97×88+3×88
2.仿照出类型的题。
3.拓展练习:
102×33
八、课堂总结
1.问题:这节课你有什么收获?
2.总结:在学习上给大家提出两点建议,希望在以后的学习中能把新旧知识融会贯通,把所学知识学以致用。
3.布置作业:
《课时练》25页1、2题
乘法分配律全国一等奖教案二
教学目标:
1、借助画图的方式理解、掌握乘法分配律并会用字母表示。
2、能够运用乘法分配律进行简便运算。
3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。
教学重、难点:
理解并掌握乘法分配律。难点是乘法分配律的推理及运用。
教学过程:
一、情境导入:
出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?
二、探究发现,归纳总结。
(一)借助图形,感知模型。
1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?
请把想象的图画出来。交流学生作品后,课件出示
60米 30米
20米 《乘法分配律》教学设计
原面积 增加的部分
2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?
评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。
(二)借助图形,抽象模型。
1、出示几何图形:用两种方法解决问题。
60米 ( )米
20米 《乘法分配律》教学设计
原面积 增加的部分
刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?
2、交流:你想增加几米?怎样算?结论是什么?
师相机板书。
引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。
3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。
( )米 ( )米
( )米《乘法分配律》教学设计
原面积 增加的部分
4、交流:你是怎么猜测和验证的?结论是什么?
教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c
讨论:这个规律在数学上叫——?(板书课题——乘法分配律)
(三)借助图形,逆用模型。
1、出示计算题:
(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。
引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?
2、46×25+54×25、98×20+98×80
请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。
(四)借助图形,拓展模型。
1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?
你们能解决这个问题吗?试着算一算。
反馈交流:说说你们是怎么解决的?
我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。
2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?
谁能用字母来表示这个新规律呢?
师板书:(a-b)×c=a×c-b×c
三、科学练习:
略
乘法分配律全国一等奖教案三
教学内容:苏教版四年级(下)运算律——乘法分配律
教学目标:1、让学生经历乘法分配律的探索过程,理解并掌握乘法分配律。
2、初步了解乘法分配律的应用。
3、在学习活动中培养学生的探索意识和抽象概括能力。
教学重点:在解决实际问题的过程中,理解并掌握乘法分配律的意义。
教学难点:正确表述乘法分配律,并能理解运用乘法分配律进行简便计算的理由。
教学过程:
一、比赛激趣,引入新课。
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛,看谁算的又对又快。
7×4×25 125×9×8 48+315+52 888+17+83 125×8
(2)、评出胜负,分析原因。
(3)、小结:运用乘法结合律和乘法交换律可以使计算简便,今天我们继续探索乘法的另一定律《乘法分配律》(板书课题)
二、初步感知乘法分配律。
1、解决以下实际问题。
问题一:育新学校马上要举行艺术节比赛了,老师准备给他们每人买一套服装,我们一起去看看好吗?(课件出示例题情景图)
短袖衫32元/件 裤子45元/件 夹克衫65元/件
(1)提问:要买5件夹克衫和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出综合算式,再算一算。
(2)学生动手,独立算出要付的钱数。
(3)教师巡视,让用65×5+45×5和(65+45)×5两种不同方法解答的学生分别口答。并说明解题思路。
板书: (65+45)×565×5+45×5
问题二:一块长方形的菜地长64米,宽26米,求周长。
(1)学生动手,独立算出周长。
(2)教师巡视,让用64×2+26×2和(64+26)×2两种不同方法解答的学生分别口答。并说明解题思路。
板书: 64×2+26×2 (64+26)×2
三、探索规律。
1、板书:(65+45)×5=65×5+45×5
(64+26)×2=64×2+26×2
2、体验感悟
(1)、谈话:请同学们观察这两个等式,你发现它们有什么共同的特点吗?
(2)在学生回答的基础上,教师根据情况相机引导:等号左边先算什么,再算什么?右边呢?
3、类比展开。
提问:你能根据刚发现的特点编几组等式吗?
学生编写,教师巡视后全班交流。
4、揭示规律。
(1)用语言表述:两个数的和与另一个数相乘,等于这两个数分别与另一个数相乘再相加;
如果有学生答得比较到位:把他的话再重复一遍的。
(2)谈话:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢?(3个)
我们就用a、b、c这三个字母来表示
(3)引导:如果在第一个等号的左边我用a来表示65,b来表示45,c来表示5就可以写成这样的形式:
板书:(a+b)×c
(4)追问:那么等号的右边应该怎么来表示呢?
学生独立完成。
学生口答后板书:(a+b)×c=a×c+b×c
四、应用规律 。
练习课本56页第一,二习题
五、拓展延伸。
1、看看前面买服装的问题,根据提供的信息,除了可以求一共要付多少元之外,还可以提出什么数学问题?
(1)出示:5件夹克衫比5条裤子贵多少元?
怎样列式?还可以怎样列式?出示:60×5-50×5 (60-50)×5
(2)思考:这两道算式等不等呢?你怎么知道相等的?
这个等式和我们发现的乘法分配律的形式一样吗?哪儿不一样?
(3)如果老师是这样买的,
出示:买5件夹克衫、5条裤子和5件短袖衫,一共要付多少元?怎样列式?还可以怎样列式?出示:
60×5+50×5+30×5 (60+50+30)×5
(4)这两道算式等不等呢?
这个等式和我们发现的乘法分配律的形式一样吗?
2小结:乘法分配律不仅适用于两个加数相加,还适用于两个数相减,甚至是多个数相加或相减。同学们掌握了这些知识后相信在今后的计算中会更加简便快捷。
六、全课小结
你今天这节课学到了什么?
请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
乘法分配律全国一等奖教案四
《乘法分配律》教学设计与评析
教学目标:1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教 具: 课 件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。
生计算。
师:请选择第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选择的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:可以
板书:(72+28)×2=72×2+28×2
出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?
(生计算,汇报)
生1:我列的算式是32×64+18×64,结果是6400元。
师:有没有用不同的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。
师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎么办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的结果都是30.
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:现在我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果一定相等。
【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】
师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?
生1:(我+你)×他=我×他+你×他 ,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。
生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。
生3:(A+B)×C=A×C+B×C
生4、(a+b)×c=a×b+a×c
生5、(○+□)×◎=○×◎+□×◎
师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?
生:第三个用小写字母的那一个。
师:你为什么觉得这个好?
生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。
师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。
(通过读式子,完善语言表达)
【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】
三、巩固应用,内化提高
1、火眼金睛,判对错。
56×(19+28)=56×19+28
64×64+36×64=(64+36)×64
32×(3×7)=32×7+32×3
2、思维敏捷,连一连。(把结果相同的两个式子连起来)
①(42+25+33)×26 ①20×25+4×25
②36×15-26×15 ②(66+34)×66
③66×66+66×34 ③42×26+25×26+33×26
④38×99+38×1 ④(36-26)×15
⑤(20+4)×25 ⑤38×(99+1)
师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。
生1、我算的是(20+4)×5=20×25+4×25,结果是600.
师:你是把两边的式子都计算了吗?
生1:没有,我是算的右边的那个式子。
师:你为什么没用左边的式子计算呢?
生1:右边的那个式子计算起来简单。
师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。
生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。
师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?
生1:不是.
生2:是,就是把它给倒过来用的。
师:是的,这是乘法分配律的逆应用,也可以用来简化计算。
生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。
师:看了这个等式,你有什么想说的?
生:我们刚才做的都是带“+”的,可是这个是“-”。
师:看来我们的乘法分配律还有新的内涵呢。
补充板书:(a-b)×c=a×c-b×c
师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?
生4:我算了,结果是2600,算的是左边的那个式子。
师:看了它,你有没有想说的?
生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。
师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?
生:能。
3、合理选择,算一算。
312×12+188×12
101×87
(53+47)×23
【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】
四、拓展延伸,引发思考。
这节课我们共同来研究了乘法分配律,除法有没有分配律呢?
板书:(a+b)&spanide;c=a&spanide;c+b&spanide;c ?
同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。
【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。
乘法分配律全国一等奖教案五
知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)
10×37+10×63
10×(37+63)
(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
10×37+10×63=10×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)
三、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)
(设计意图:学生用不同的方法列式计算,为探讨规律做准备。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?
5、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?运算顺序不同但结果相同)
(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?
(a+b)×c=a×c+b×c
(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。
四、探索发展,应用规律
(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)
五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)
1、请大家根据运算定律在下面的_里填上适当的数。
(10+7)×6=______×6+______×6
8×(125+9)=8×______+8×______
7×48+7×52=______×(______+_______)
2、将得数相等的算式用线连起来。
3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?
六、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
乘法分配律全国一等奖教案六
一、教材依据
义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)
二、设计思想
“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。
在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。
三、教学目标:
1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;
2、理解和掌握乘法分配律并会用字母表示;
3、能够运用乘法分配律进行简便计算;
4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
四、教学重点:
引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。
五、教学难点:
乘法分配律的应用,进行一些简便计算。
六、教学准备
多媒体教学课件
七、教学过程
(一)情境导入,发现问题
昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?
课件出示:图片一共贴了多少块瓷砖?
(1)谁能估一估,贴了多少块瓷砖?
(2)谁来用自己的方法来验证估计是否正确?
还有不一样的方法吗?谁来说说看?(生口答,师板书)
板书:6×9+4×9(6+4)×9
=54+36=10×9
=90(块)=90(块)
(3)请同学们观察,看看有什么发现?(学生讨论,汇报)
(二)引导探究,发现规律
1、猜想、验证
(1)能不能利用你的发现举些例子来呢?
生:举例
(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?
(学生小组合作尝试,进行探索)
2、概括、归纳
(1)说说你们刚才验证的情况。
生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。
生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。
生3……
生4……
(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?
问:我们能不能用一个式(字母)把乘法分配律表示出来呢?
生:(a+b)×c=a×c+b×c
(3)等号表示什么意思?(这个等式反过来也成立)
(三)加强应用、深化理解
我们发现了乘法分配律,它又有怎样的应用呢?
(课件分步出示练习)
1、填一填(课本49面练一练第一题)
2、请同桌同学合用研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
(1)学生讨论研究;
(2)汇报计算方法,重点说为什么这样算;
(3)小结:通过研究,应用乘法分配律可以使一些计算简便。
(四)巩固练习、解决问题
(课件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
2、下面这些题,能用简便方法计算吗?怎样计算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)课堂小结
1、说说今天我们研究了什么?
2、大家想一想,我们是怎样发现乘法分配律的呢?
3、乘法分配律有什么应用?
【乘法分配律全国一等奖教案 分数乘法教学设计一等奖6篇】相关推荐文章:
乘法分配律教学内容分析 乘法分配律优秀教案
2022年小学数学四年级下册乘法分配律教案精七篇
全国宪法演讲一等奖稿子大学生【精选五篇】
禁毒征文800字左右一等奖 禁毒征文优秀一等奖作品精选
防溺水征文800字一等奖 同心防溺水征文800字一等奖