当前位置:网站首页 >> 作文 >> 六年级奥数题及答案题解析(通用17篇)

六年级奥数题及答案题解析(通用17篇)

格式:DOC 上传日期:2024-04-21 23:38:02
六年级奥数题及答案题解析(通用17篇)
时间:2024-04-21 23:38:02     小编:梦幻泡

通过总结,我们可以更好地认识自己,了解哪些方面需要改进和加强。在写作的过程中,思绪纷乱是常有的事情,需要有方法来整理。总结是对个人成长和发展的一种必要方式,以下是一些总结范文,希望能帮助大家产生思考。

六年级奥数题及答案题解析篇一

张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利10.5万元.这套房子原标价()万元.

分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.

解答:解:10.5÷(1+30%-95%),

=10.5÷35%,

=30(万元),

答:这套房子原标价30万元;。

故答案为:30.

点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.

文档为doc格式。

六年级奥数题及答案题解析篇二

答案与解析:610不是3的倍数,所以61034也不是3的倍数。因此这个数不能整除24。

610÷24=25……10。

6102÷24余4。

6103÷24余16。

6104÷24余16。

……。

以后余数都是16,所以61034除以24余16。

1、直观画图法:解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。

4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。

6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。

六年级奥数题及答案题解析篇三

考点:列方程解含有两个未知数的应用题;差倍问题。

专题:和倍问题;列方程解应用题。

分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.

解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:

10x﹣x=288,

9x=288,

x=32;。

则桌子的价格是:32×10=320(元),

答:一张桌子320元,一把椅子32元.

点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元。

六年级奥数题及答案题解析篇四

原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土方。

答案:

方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。

解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,

原计划每人每天挖土的方数:1÷(1/3)=3(方)。

所以24x(y-5)=18(x+1)×(y-5),

根据题意得出y必须大于5,

所以24x=18x+18。

6x=18。

x=3。

答:原计划每人每天挖土3方,故答案为3。

六年级奥数题及答案题解析篇五

注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的.流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。

只要设某一个量为单位1,其余两个量便可由条件推出。

每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1。

即一个排水管与每个进水管的工作效率相同。由此可知。

一池水的总工作量为1×4×5-1×5=15。

又因为在2小时内,每个进水管的注水量为1×2,

所以,2小时内注满一池水。

至少需要多少个进水管?(15+1×2)÷(1×2)=8.5≈9(个)。

答:至少需要9个进水管。

六年级奥数题及答案题解析篇六

据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约5%的智力超常儿童适合学习奥数。下面是六年级奥数题及答案,为大家提供参考。

六年级。

1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有2013名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。

2.正方体一个面的面积是144÷4=36平方厘米,根据长方体的表面积可得:

36×(4n+2)=3096。

144n+72=3096。

n=21。

答:n是21。

六年级奥数题及答案题解析篇七

考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

解答:解:45+5×3。

=45+15。

=60(千克)。

答:3箱梨重60千克。

点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。

六年级奥数题及答案题解析篇八

先把重点常考的专题学好,我们知道在每个专题里都有核心的知识点,可以这么说,把最简单而又最重要的那些东西掌握好基本上就够了,并不一定非得做太多的题目。比如说行程问题里,一定要熟练运用时间速度路程三个量之间的比例关系来解题。直线形面积问题其实主要就是一个面积比和线段比怎么转化的问题,等等。

每个孩子起步的早晚不同,难免有些内容是别人学过而我没学过的,一旦考到就非常吃亏。那么怎么去补呢,我想也没有必要专门做这个事情,在平时上课的时候,如果老师讲到了你不太会,没学过的地方,给你几个建议:

1.立即举手请老师详细讲解,我相信每一个负责任的老师都会帮你把问题解释清楚的,但你不问老师就很难发现你没懂。

2.课后请教老师,有的同学和家长总觉得下课时间很短,老师没时间帮我讲,其实情况确实如此,但有时候一个问题你想半天没搞懂,可能老师的一句话就会对你有启发,进而把问题弄明白。

3.回家后进一步思考,有很多同学总觉得这个题我不会,好了,那我就不用做了。我经常给我的学生说这样的话:一道题你想了30分钟突然灵机一动想出来了,难道前29分钟的思考就没用了么?事实上前面的29分钟反而是最有用的,因为我要解决这样一个问题的时候遇到了困难,通过思考我把以前学过的方法都用上了(复习以前学过的东西)但还是做不出来,这段时间绝对是有效学习时间因为在思考的'过程中你把你学过的相关内容都复习了一遍,最终无论通过自己还是请教别人把题目做出来后(学到了新的方法,或者巩固了旧知识)都是非常有益的。

时间目前已经非常宝贵,利用的好就能在接下来的各种比拼中取得先机。每天都想一下,今天我学到了些什么东西,我在哪个方面有所提高。只要你每天能找到一个进步的地方,我想你会就觉得数学越来越简单了.切记不要每天只是忙于上课,考试。一定要有消化知识的过程,否则很难取得好成绩,或者说即使突击成功,上了中学也会吃大亏。

计算! 计算! 计算!

之所以写三遍,实在是因为它太重要了,大部分的题目都只需要一个得数,如果费了半天力气想出好办法却把数算错那真是太得不偿失了。我们可以做下面的两件事情:第一,把一些常见的数“背”下来,例如1-30的平方,2的1次方到2的10次方等等,考试的时候一旦用到直接写出正确得数会非常节省时间,因为平均一个题目2分钟,如果20个题目你每个题目省下15秒那么就是5分钟了,某些情况下,时间=分数,像2月5号的考试就有很多同学因为时间不够没做完题。第二,计算能力的训练,每天花10-15分钟做10道计算题,检验自己的正确率,好处有两个,一个是提高计算能力,二是提高在时间紧迫的情况下做题的抗压能力。这些基本能力都是会受用终身的,至少在高考之前如此:)

六年级奥数题及答案题解析篇九

张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利10.5万元.这套房子原标价万元.

分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.

解答:解:10.5÷(1+30%-95%),

=10.5÷35%,

=30(万元),

答:这套房子原标价30万元;。

故答案为:30.

点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.

六年级奥数题及答案题解析篇十

现有甲、乙、丙三种硫酸溶液。如果把甲、乙按照3:4的质量比混合,得到浓度为17.5%的硫酸;如果把甲、乙按照2:5的质量比混合,得到浓度为14.5%的硫酸;如果把甲、乙、丙按照5:9:10的质量比混合,可以得到浓度为21%的硫酸,请求出丙溶液的浓度。

答案与解析:

巧用溶度问题中的比例关系。

甲乙3:4混合变成2:5,混合液溶度下降了3%。

相当于7份中的1份甲液换成了乙液,溶度下降了3%。

那么继续把2份甲换成乙,得到的就是纯乙溶液的溶度:14.5%-3%×2=8.5%。

同理,也可以相当于7份中的1份乙液换成了甲液,溶度上升了3%。

那么把4份乙换成甲,得到的就是纯甲溶液的溶度:17.5%+3%×4=29.5%。

又因为甲、乙、丙按照5:9:10的质量比混合,可以得到浓度为21%的硫酸。

甲、乙按照3:4的质量比混合,得到浓度为17.5%的硫酸。

甲、乙按照2:5的质量比混合,得到浓度为14.5%的硫酸。

六年级奥数题及答案题解析篇十一

六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的收获。

答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标。当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间。乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80x9=720(米),甲距目()标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟)。

另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900x2(100+80)=10分钟。

六年级奥数题及答案题解析篇十二

小编导语:根据一年级

同学

课上

学习

的'知识点,巨人数学网为同学们精心准备了

小学

一年级奥数题,本道奥数题是

关于

小学举办足球赛的试题,这是一道很有代表性的试题,请同学们认真做题,并总结同类型试题应该注意的事项,避免以后再犯同类错误。

答案:方法一:用圆圈表示小学,用线段表示比赛,画示意图如下:

由图得,一小和二小、三小、四小、五小、六小(黑色线段)共赛5场;

二小再和三小、四小、五小、六小(绿色线段)共赛4场;

三小再和四小、五小、六小(橙色线段)共赛3场;

四小再和五小、六小(棕色线段)共赛2场;

五小再和六小(蓝色线段)共赛1场;

比赛场次总数为5+4+3+2+1=15(场)

方法二:每个学校都要和

其他

的五个学校各赛一场,共5场。因而六个学校所赛的场次是5×6=30场。但是这样计算还有个问题,比如说一小和二小赛了一场,这一场比赛被两个学校都计算在了自己所赛的场次里,因而被计算了两次。所以总场数也就多计算了一倍,也就是说,六个学校实际赛的总场次数是30÷2=15(场)。

六年级奥数题及答案题解析篇十三

【口诀】:

和加上差,越加越大;。

除以2,便是大的;。

和减去差,越减越小;。

除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

已知整体求部分。

【口诀】:

家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;。

分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

【口诀】。

我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,

乘以各自的倍数,

两数便可求得。

例:甲数比乙数大12,甲:乙=7:4,求两数。

先求一倍的量,12/(7-4)=4,

所以甲数为:4x7=28,乙数为:4x4=16。

【口诀】:

假设全是鸡,假设全是兔。

多了几只脚,少了几只足?

除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36,有脚120,求鸡兔数。

(1)加水稀释。

【口诀】:

加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?

加水先求糖,原来含糖为:20x15%=3(千克)。

糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)。

(2)加糖浓化。

【口诀】:

加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20x(1-15%)=17(千克)。

水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)。

(1)相遇问题。

【口诀】:

相遇那一刻,路程全走过。

除以速度和,就把时间得。

相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)。

(2)追及问题。

【口诀】:

慢鸟要先飞,快的随后追。

先走的路程,除以速度差,

时间就求对。

先走的路程,为3x2=6(千米)。

速度的差,为6-3=3(千米/小时)。

所以追上的时间为:6/3=2(小时)。

【口诀】:

全盈全亏,大的减去小的;。

一盈一亏,盈亏加在一起。

出自 COoco.nEt.CN

除以分配的.差,

结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?

一盈一亏:则公式为:(9+7)/(10-8)=8(人),相应桃子为8x10-9=71(个)。

例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?

【口诀】:

每牛每天的吃草量假设是份数1,

a头b天的吃草量算出是几?

m头n天的吃草量又是几?

大的减去小的,除以二者对应的天数的差值,

结果就是草的生长速率。

原有的草量依此反推。

公式就是a头b天的吃草量减去b天乘以草的生长速率。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;。

有的草量除以剩余的牛数就将需要的天数求知。

结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);。

原有的草量依此反推。

公式就是a头b天的吃草量减去b天乘以草的生长速率。

所以原有的草量=27x6-6x15=72(牛/天)。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;。

这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;。

所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)。

【口诀】:

岁差不会变,同时相加减,

岁数一改变,倍数也改变。

抓住这三点,一切都简单。

例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?

岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13x3=39岁,小军的年龄是13x1=13岁,所以应该是5年后。

岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。

六年级奥数题及答案题解析篇十四

答案与解析:单打每张球桌2人,双打每张球桌4人。

如果10桌全是单打,出场的.球员将只有20人。

但是现在有32人出场,多12人。

每拿一桌单打换成双打,参赛的球员多出2人。

要能多出12人,应该有6桌换成双打。

是:6桌双打,4桌单打。

这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题。上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换。

也可利用中国古代解答鸡兔同笼问题时的“折半”法,算法更简单。

每张球桌沿着中间的球网分成左右两半,只考虑左半边。

单打的球桌左半边站1个人,双打的球桌左半边站2个人。

10张球桌两边共站32个人,左半边共站16个人。

六年级奥数题及答案题解析篇十五

如果速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2。

因为只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3。

所以甲乙两第之间的距离是180÷(1-2/3)=540千米。

原速度:减速度=10:9,

所以减时间:原时间=10:9,

所以减时间为:1/(1-9/10)=10小时;原时间为9小时;。

原速度:加速度=5:6,原时间:加时间=6:5,

行驶完180千米后,原时间=1/(1/6)=6小时,

所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,

所以两地之间的距离为60*9=540千米。

六年级奥数题及答案题解析篇十六

原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的.30.2%,那么第二次降价后的价格是原来定价的百分之几?(b级)。

要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。

解:设第二次降价是按x%的利润定价的。

38%×40%+x%×(1-40%)=30.2%。

x%=25%。

(1+25%)÷(1+100%)=62.5%。

答:第二次降价后的价格是原来价格的62.5%。

六年级奥数题及答案题解析篇十七

答案与解析:

顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)。

无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12.5(秒)。

答案与解析:

假设ab两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).

答案与解析:

本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服