在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
分式的约分教学反思篇一
约分是分数基本性质的直接应用。通过学习约分,不仅可以巩固分数的基本性质,而且还可以为今后学习分数四则计算打下基础。本课教学我是这样做的:
唤起学生对分数的基本性质和数的整除中相关知识的回忆,为约分的学习做好准备。
自学检测,以学生自主探究为主,让全体学生通过观察、探究、展示、交流、小结等活动,学生也在约分的探究学习中相互交流了自己的想法和做法。
在学生交流的基础上教师的启发引导从化简分数的具体过程中抽象出约分的概念。
通过各种练习题是学生加强对约分的理解与运用。
课堂练习安排了针对性很强的练习题:全面了解学生对约分方法的掌握情况。
让学生更好地感受约分方法的学习过程,进一步提高约分方法的掌握水平。
分式的约分教学反思篇二
一堂课就如同一个生命体,如何使这个生命体活力四射,使师生双方都能全身心投入,设计好“课眼”非常重要。
有了这个想法后,我调整了原先的教学设计,把最简分数提前教学,用最简分数带出约分。
我先出示几组数:3和7,5和18,8和9,4和9,让学生回答每组数的最大公因数,很多孩子通过前面的学习都能马上口答出每组数的最大公因数都是1,我问他们不用计算只观察就能回答的原因,学生自然就回答因为每组数都是互质数(公因数只有1);我接着问:你能用每组的两个数分别作分子和分母,然后得到一个分数吗?学生自由发言我板书,然后我问:这些分数有什么共同的特征?你能给这样的分数取个名字吗?学生踊跃的给出了很多答案。从“互质分数”“分子和分母很小的分数”“简单的分数”一直到最后“最简分数”就诞生了。
学生觉得很新奇有成就感,而且通过发现、命名这一过程加深了学生对最简分数的本质属性的认识。接着我再引导学生观察这几个最简分数,他们自然地认识到最简分数既可以是真分数,也可以是假分数,这样更进一步地丰富了学生对最简分数外延的认识。然后我再通过图片给出了一个故事情境:……老爷爷要吃块饼,如果你是小智多星,你知道应该怎么分这块饼给他吗?孩子们通过图片能够很直观的回答出分一半或者说分个饼给老爷爷就可以了。于是引导:这说明和这两个分数是相等的。如果我不给你图片,用哪一个分数能让我们更直观的知道怎么分饼呢?学生自然回答:,是一个最简分数。
由此感受到了最简分数的优点,和把不是最简分数的分数化为最简分数的必要性。接着我再问你能把分子和分母比较大的分数化成最简分数吗?根据什么?小组内先互相说一说,于是就顺理成章的转入了约分环节的教学。
总体来说,这节课除了给出的几组数以及故事情境是预设,其他的都是由学生随机生成,这样的调整,让这节课活了起来,生机盎然,教学线条自然而流畅。
分式的约分教学反思篇三
本节课,我还是采用四段的教学方法。第一步是新课前的复习,第二步是教学新课,第三步是巩固练习,第四步知识整理拓展训练。
教学前为学生提供充分探究和发现的时间与空间。分数的基本性质,从约分含义的理解到约分方法的学习,教师始终立足于培养学生的学习能力、教会学生学习方法的基础上,相信学生的潜能,通过第一组活动,引发学生思考,发现几个分子分母不同的分数相同;借助第二组活动引导学生观察、理解约分的含义;创设第三组活动,为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。可以说整个学习过程中,学生是学习的主体,教学的重点和难点都是在学生的发现、探究、讨论中解决,课堂处处闪动着学生智慧的光芒。
教学中教师关键处的点拨和发人深省的提问充分体现了教学主导的作用,既引导学生的发现,又不限制学生的思路;既能放开手充分培养学生的发散思维,又能在发散思维之后,求同存异,提升学生的认识,使课堂充满生机,启发引导无痕迹。
练习的设计体现了清晰的层次性,尤其是最后游戏的创设符合儿童好玩、好动、天真活泼的特点,同时又寓教于乐,使学生对约分的认识有了更新鲜,不呆板的认识。
觉得我的失误是在开始预设时,在教学时过早地引入一次约分的方法,这个方法没有让学生自己通过大量的分步约分的练习来体会来比较。由于有的学生对两个数的最大公因数一次很难找准,给一次约分造成困难。我觉得以后再上此课时,要注意。
分式的约分教学反思篇四
约分是在学生已经掌握了分数的基本性质,学习了求最大公因数的方法的基础上学习的。教学目标要求学生认识约分的含义,掌握约分的方法,能正确进行约分。
课开始我要求学生找出四个与老师说的分数相等的分数,使得学生在愉快的氛围中开始学习,调动学生的学习热情,激发学生的求知欲。使学生乐学、好学,较好地培养学生对数学学习的'情感。
考虑学生已有的知识基础——分数基本性质和最大公因数的求法。通过要求学生找出四个与老师说的分数相等、分子分母都比较小的分数,合理地迁移知识,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。
为学生提供充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,都立足于培养学生的学习能力、教会学生学习方法,相信学生的潜能,通过找四个分数找出相等的关系这一活动,引发学生思考,发现几个分子分母不同的分数相等;用学过的知识解释这些分数相等的原因引导学生观察、理解约分的含义:同原分数相等,分子分母都比较小的分数;通过小组合作探究约分的方法为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。
练习中体现了清晰的层次性,寓教于乐,使学生对约分的认识得以不断加深。
将本文的word文档下载到电脑,方便收藏和打印。
分式的约分教学反思篇五
本节课先进行了求公因数和最大公因数的复习,并且复习了是2、3、5倍数的特征,为判断最简分数及约分打好基础。新课教学时把最简分数与约分两道例题在一课时内完成,因为两题联系密切,约分的教学是呼之欲出。如果强行分割开来不便于学生练习与巩固相关知识。
本课约分的`正确书写是一大难点。如果一开始就使学生养成良好的约分习惯,再学习分数四则运算时将会明显减少一些不必要的失误。
在教学时,一直强调分数占两行书写,今天的作业还特别要求在分子、分母再多留一行,以便写出约分后的结果。在自己示范板书时,特别向学生说明:为清晰地看到约分后的结果应将数据向上、向下分别书写,不要写在同一行。
教学完约分后必须强调:如果今后遇到填空、解决问题的结果不是最简分数时必须先约分。但从作业反馈来看,学生主动约分的意识很淡薄。87页第7、8题超过半数的学生没有自主约分。
分式的约分教学反思篇六
我昨天讲授了《约分》,孩子们掌握得不是很理想,讲完从头脑的接收,到理解消化,需要一个过程。在讲授约分概念的时候,学生对“把一个分数的分子和分母同时除以公因数,分数的值不变,这个过程叫约分”等数学专业字眼不是很理解,于是我就举例,“语文课上,你们学会缩写句子吗?”学生异口同声回答学过。“在数学上,约分就好比一个缩写句子的过程,去掉修饰,剩下的主干再不能缩了,就叫最简分数。再比如,你们吃过花生吗?是不是先剥去外壳,然后再搓去红皮,最后剩下白仁,还能再剥吗?这就相当于最简分数。明白吗?”这时,孩子们才若有所思地点点头,从脸上表情中看出刚才的困惑释放了不少,我才稍稍放下心来。
在随后的练习中,我巡视发现有近三分之一的学生约分不能到最简分数,只是除以其中一两个公因数而已。针对以上情况,我抛出一个问题“最简分数分哪几种情况?”,学生各抒己见,最后我们共同总结出三种情况,一是分子和分母是相邻的关系,它们的公因数是1,是最简分数;二是分子和分子是不同的质数的情况下,它们的.公因数也是1,是最简分数;三是分子是一的分数,它们的公因数也是1,是最简分数。
有了以上总结这三点,学生不仅节约了判断的时间,还有了检验是否化到最简分数的标准,有效降低了出错率。
分式的约分教学反思篇七
求几个数的最大公因数提到第二单元教,因此课前进行了求公因数和最大公因数的复习,并且复习了是2、3、5倍数的特征,为判断最简分数及约分打好基础。新课教学时把最简分数与约分两道例题在一课时内完成,因为两题联系密切,约分的教学是呼之欲出。如果强行分割开来不便于学生练习与巩固相关知识。
本课约分的正确书写是一大难点。如果一开始就使学生养成良好的约分习惯,再学习分数四则运算时将会明显减少一些不必要的失误。我以往的学生常为节约作业本,将分数写在一行里。约分的位置不够时,他们就将约得的结果往分子分母的右侧写,数据靠得太紧,常因看错而出错。所以,今年再教时,我一直强调分数占两行书写,今天的作业还特别要求在分子、分母再多留一行,以便写出约分后的结果。在自己示范板书时,特别向学生说明:为清晰地看到约分后的结果应将数据向上、向下分别书写,不要写在同一行。同时,建议教材再版时不要在原数上约分。可先把原分数照抄一次后再约分,这样更方便检查,书写的格式也更规范。
教材第5题很好体现了约分的价值。当我请学生想办法比较两个分数的大小时,有的学生提议画分数示意图,看哪个分数的面积大。这种策略虽然形象直观,但毕竟太麻烦;有的学生提议根据分数与除法的关系,用分子除以分母,把它们化成小数后再比较,但计算起来也很费时;有了约分的知识,问题迎刃而解,学生们都说好。
但作业也暴露出学生的一些知识缺陷——同分子分数不会比较大小。原来三年级上册学习分数的初步认识时,教材都是通过直观图来帮助学生进行同分子或同分母分数大小的比较,学生并未形成这方面的技能。建议:下次再教时,可将93页分数大小的比较提前到本课之前(如:学习完分数的基本性质之后)教学。浙江版义教教材是分数的意义学习后,真、假分数之前教学的。
教学完约分后必须强调:如果今后遇到填空、解决问题的结果不是最简分数时必须先约分。但从作业反馈来看,学生主动约分的意识很淡薄。87页第7、8题超过半数的学生没有自主约分。
分式的约分教学反思篇八
本节课我没有完全照搬课本上的例题1,而是利用例题1从18/24入手,让学生根据分数的基本性质,找出几个与它们大小相等的分数。学生通过写分数、说理由自然地复习了分数的基本性质。使学生在解决问题中自然而然地进入探究新知的状态。然后板书36/48=18/24=9/12=3/4,通过“比较这些相等分数的相同点和不同点”,分数的分子和分母的数字都变小了,是因为分数的分子和分母同时除以了相同的数,即分子和分母的公因数,从而引出约分的概念。“36/48约分成3/4后还能继续再约分吗?为什么?”引导学生总结归纳出“分子和分母是互质数的分数,叫做最简分数”“你能举出几个最简分数吗?”引导学生不断地说,真正理解什么是最简分数。之后是学习例题2约分的书写格式及约分的方法。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。学生们基本上都对一次约分的方法感兴趣,但一次约分的要求更高,就是要一眼找出分子分母的最大公因数。
通过一系列递进式的`探索活动,我让学生自己通过体验归纳总结,举例验证,由内到外的理解概念的意义,打破了概念教学教师一味讲解的模式,层层深入,激活了学生的思维,调动了学生学习的主动性和积极性,学生有足够的空间和时间去领略数学的魅力,从而成为学习的主人。
分式的约分教学反思篇九
《约分》这节课主要是让学生理解约分及最简分数的意义,掌握约分的方法,能准确判断约分的结果是不是最简分数是这节课的教学难点。在设计中,我首先充分考虑到学生已有的知识基础——分数基本性质和最大公因数的求法。因此本课无需在此处多费时间,合理的知识迁移,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。其次补充2、5、3的倍数练习。为学生熟练掌握约分方法做准备。
对我们的学生来说,掌握约分的方法并不难,要熟练进行约分,关键在于能够很快看出分子、分母是否含有公因数2、5、3等。而且判断约分的结果是不是最简分数,即判断分子、分母是否只有公因数1,如果只有公因数1,那么这个分数是最简分数如果分子、分母是否含有大于1的公因数,这个分数不是最简分数。因此,在教学中适当补充一些判别2、5、3的倍数练习,为学生学习约分提供必要的扎实基础。
全,不能正确判断出两个数的最大公因数等,都是学生约不好分的主要原因。我觉得只有通过反复的练习和纠正才能逐步提高学生约分的能力。
判断一个分数是否是最简分数,学生掌握得较好。对于逐次约分的过程,学生失误较多,从学生做的练习可以看出来。学生在根据分数的基本性质写出几个与已知分数相等的分数时都会,可是一到根据分数的基本性质进行约分时就常出现分子、分母除以不一样的数,我想是因为在找分子分母的公因数,学生还不熟练以及综合运用知识的能力较弱引起的,在今后的教学中,我会努力探索,改进教学方法,不断提高课堂的教学效率。