当前位置:网站首页 >> 作文 >> 最新级数学教案范例(通用16篇)

最新级数学教案范例(通用16篇)

格式:DOC 上传日期:2023-12-27 03:38:06
最新级数学教案范例(通用16篇)
时间:2023-12-27 03:38:06     小编:LZ文人

作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

级数学教案范例篇一

本课(节)课题3.1认识直棱柱第1课时/共课时。

教学目标(含重点、难点)及。

1、了解多面体、直棱柱的有关概念.

2、会认直棱柱的侧棱、侧面、底面.。

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。

教学重点与难点。

教学重点:直棱柱的有关概念.

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

内容与环节预设、简明设计意图二度备课(即时反思与纠正)。

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

1.多面体、棱、顶点概念:

2.合作交流。

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。

述其特征。)。

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)。

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固。

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的'相邻两条侧棱互相平行且相等。

4.学以至用。

出示例题。(先请学生单独考虑,再作讲解)。

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。

最后完成例题中的“想一想”

5.巩固练习(学生练习)。

完成“课内练习”

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计。

作业布置或设计作业本及课时特训。

级数学教案范例篇二

1教师教法:尝试法、引导法、发现法

2学生学法:在教师的引导下,尝试发现新知,造就成就感

(一)重点

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

级数学教案范例篇三

1,让孩子们不受物体的形状,大小等干扰,会用各种方法数排列不规则的物体。

2,让孩子们能正确判断10以内物体的数量。

二活动准备。

1,10以内的物体若干,物体要求有同类的和不同类的。数字卡片若干。

2,不干胶,纸等若干。

三活动过程。

一,通过操作活动让幼儿积累数不规则排列物体的经验。

1,物体和数对应。

提供给幼儿实物若干,如:豆豆,积木,等。教师说出数字,让幼儿按数字数出相应的实物与数字想对应。

2,数字卡若干,按数归类。

提供给幼儿数字卡,让幼儿按数归类。

卡上的数数清楚,并和卡片上的数字对应即可。

3,幼儿操作。

便一个数字卡,找到相应的实物。

小结:通过操作,让幼儿积累数不规则排列物体的经验。

二,通过讨论活动,帮幼儿归纳出数不规则物体数量的基本方法。

1,幼儿数出不干胶贴上的动物数量,然后贴在相应的数字卡下面。

物。还有标记法,让幼儿对实物进行做标记,避免漏掉。这些都是帮幼儿学习数不规则数的最基本的也是最易掌握的数数方法。

2,让幼儿分析讨论不同的方法与物体排列间的关系。

孩子们明白把物体点数清楚就好,别受位置影响数数。让孩子们明白数数与实物的形状大小排列没有关系。

三,通过练习使幼儿加深对各种数数类型的理解。

提供给幼儿更多的实物,数字卡片供幼儿练习,以便幼儿对所学数数方法得到进一步的巩固。

1,可以把相同数量的物体和卡片归纳在一起。

如:让幼儿把相同数量的物体如:相同的布娃娃,相同的积木给找出来,和相应的数字卡放一起。

2,用玩具或不干胶编出数数的题目让幼儿练习。

教师编出题目让幼儿练习,一巩固所学知识。如;按数取物,按卡片数子找出实物;按物取数,按物体数量找到相应的数字。

活动反思:

续加强,不断学习,提高自己的业务水平,为孩子们服务。

级数学教案范例篇四

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)。

2.能将用科学记数法表示的数还原为原数.(重点)。

教学过程。

一、情境导入。

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

二、合作探究。

探究点一:用科学记数法表示大数。

例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()。

a.167×103b.16.7×104。

c.1.67×105d.1.6710×106。

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选c.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.

例220xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()。

a.9.34×102b.0.934×103。

c.9.34×109d.9.34×1010。

解析:934千万=9340000000=9.34×109.故选c.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数。

例3已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)2.01×104=0;。

(2)6.070×105=607000;。

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

三、板书设计。

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤|a|10,n是正整数.

(3)n比原数的整数位数少1.

教学反思。

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

级数学教案范例篇五

【教学目标】:

1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

2.发展学生的形象思维能力,和数形结合的意识。

3.用坐标表示平移体现了平面直角坐标系在数学中的应用。

4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。

重点:掌握坐标变化与图形平移的关系。

难点:利用坐标变化与图形平移的关系解决实际问题。

【教学过程】。

一、引言。

上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。

二、新。

展示问题:教材第75页图.

长度呢?

(2)把点a向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

));将点(xy)向上(或下)平移b个单位长度可以得到对应点(xy+b)(或()).

标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

例如图(1),三角形abc三个顶点坐标分别是a(4,3),b(3,1),c(1,2).

所得三角形a1b1c1与三角形abc的大小、形状和位置上有什么关系?

所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

向下平移5个单位长度得到.

课本p77思考题:由学生动手画图并解答.

归纳:

三、练习:教材第78页练习;习题7.2中第1、2、4题.

四、作业布置第78页第3题.

级数学教案范例篇六

2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

深化对正负数概念的理解

正确理解和表示向指定方向变化的量

设计理念

知识回顾与深化

问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

问题3:教科书第6页例题

说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

巩固练习教科书第6页练习

阅读思考

教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

小结与作业

课堂小结以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

3,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

级数学教案范例篇七

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

一、复习。

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间速度=路程/时间。

二、新授。

画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习。

教科书第17页练习1、2。

四、小结。

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业。

教科书习题6.3.2,第1至5题。

级数学教案范例篇八

1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.

2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力.

3.通过平行关系在生活中的应用,培养学生的应用意识.

复习提问:

1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?

2.试说出两直线平行的意义.

前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的垂直关系.)。

前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.

(由学生口答,教师帮助完善,得出定义.)。

问题1-3:图中,除了棱ab外,还有与面a'b'c'd'平行的棱吗?有哪几条?

(由学生分别说出棱bc,cd,ad都与面a'b'c'd'平行.)。

问题1-4:除了面a'b'c'd'外,棱ab还与哪个平面平行?

问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?

(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)。

例题:如下图,在长方体中,棱cd与哪些面平行?面a'b'c'd'与哪些棱平行?

答:棱cd与面a'b'bc、面a'b'c'd'平行;。

面a'add'棱bb、棱bc、棱c'c、棱b'c平行;。

面a'b'ba与面d'c'cd平行.

(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力.)。

课本第90页练习第l、2题.

本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.

我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.

级数学教案范例篇九

2.培养用数学的意识,激发学习兴趣.

学习重点:理解有序数对的意义和作用。

学习难点:用有序数对表示点的位置。

一.问题导入。

1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.

2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二.概念确定。

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

利用有序数对,可以很准确地表示出一个位置。

1.在教室里,根据座位图,确定数学课代表的位置。

2.教材40页练习。

三.方法归类。

常见的确定平面上的点位置常用的方法。

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

1.如图,a点为原点(0,0),则b点记为(3,1)。

2.如图,以灯塔a为观测点,小岛b在灯塔a北偏东45,距灯塔3km处。

例2如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰b的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

[巩固练习]。

1.如图是某城市市区的一部分示意图,对市政府来说:

结合实际问题归纳方法。

学生尝试描述位置。

2.如图,马所处的位置为(2,3).

(1)你能表示出象的位置吗?

(2)写出马的下一步可以到达的位置。

[小结]。

1.为什么要用有序数对表示点的位置,没有顺序可以吗?

2.几种常用的表示点位置的方法.

[作业]。

必做题:教科书44页:1题。

级数学教案范例篇十

2,能区分两种不同意义的量,会用符号表示正数和负数;。

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

正确区分两种不同意义的量。

两种相反意义的量。

设置情境。

引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.

学生活动:思考,交流。

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的`数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

这些问题都必须要求学生理解.教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性。

课堂练习教科书第5页练习。

课堂小结围绕下面两点,以师生共同交流的方式进行:

1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;。

2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

本课作业教科书第7页习题1.1第1,2,4,5(第3题作为下节课的思考题。

作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要本课教育评注(课堂设计理念,实际教学效果及改进设想)。

负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

级数学教案范例篇十一

(一)知识与技能。能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。经历类比带有括号的有理数的运算,发现去括号时的符号变化的`规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。培养学生主动探究、合作交流的意识,严谨治学的学习态度。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

投影仪。

现在我们来看本章引言中的问题(3):

利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60。

级数学教案范例篇十二

(一)教学知识点。

1.与身边熟悉的事物做比较感受百万分之一等较小的数据并用科学记数法表示较小的数据.

2.近似数和有效数字并按要求取近似数.

3.从统计图中获取信息并用统计图形象地表示数据.

(二)能力训练要求。

1.体会描述较小数据的方法进一步发展数感.

2.了解近似数和有效数字的概念能按要求取近似数体会近似数的意义在生活中的作用.

3.能读懂统计图中的信息并能收集、整理、描述和分析数据有效、形象地用统计图描述数据发展统计观念.

(三)情感与价值观要求:

1.培养学生用数学的.意识和信心体会数学的应用价值.2.发展学生的创新能力和克服困难的勇气.

1.感受较小的数据.

2.用科学记数法表示较小的数.

3.近似数和有效数字并能按要求取近似数.

4.读懂统计图并能形象、有效地用统计图描述数据.

教学难点:形象、有效地用统计图描述数据.

教学过程:.创设情景引入新课。

请你用熟悉的事物描述一些较小的数据:大象是世界上最大的陆栖动物它的体重可达几吨。世界第一高峰——珠穆朗玛峰它的海拔高度约为8848米。

1.哪些数据用科学记数法表示比较方便?举例说明.

2.用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成其中氢原子的直径约为0.0000000001米.

(2)生物学家发现一种病毒的长度约为0.000043毫米;

(3)某种鲸的体重可达136000000千克;

(4)20xx年5月19日国家邮政局特别发行“万众一心抗击‘非典’”邮票收入全部捐给卫生部门用以支持抗击“非典”斗争其邮票的发行量为12500000枚.

1.又一次经历感受了百万分之一进一步体会描述较小数据的方法:与身边事物比较进一步学习了利用科学记数法表示较小的数据.

2.在实际情景中进一步体会到了近似数的意义和作用并按要求取近似数和有效数字.

3.又一次欣赏了形象的统计图并从中获取有用的信息.

(1)根据上表中的数据制作统计图表示这些主要河流的河长情况你的统计图要尽可能的形象.

(2)从上表中的数据可以看出河流的河长与流域面积有什么样的联系?

制作形象的统计图首先要处理好数据即从表格中计算出这几条河流长度的比例然后选择最大或最小作为基准量按比例形象画出即可.

(1)形象统计图(略)只要合理即可.

(2)从表中的数据看出河流越长其流域面积越大.

(3)河流的年径流量与河流所处的位置有关系.

级数学教案范例篇十三

教学目标:

【知识与技能】。

了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

【过程与方法】。

理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【情感、态度与价值观】。

体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教具准备】小黑板科学计算器。

【教学过程】。

一、导入。

1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的`知识将会更加有趣。

2、板书:实数1.1平方根。

二、新授。

(一)探求新知。

2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。

3、你还能举出哪些无理数?(,)、、1/3是无理数吗?

4、有理数和无理数统称为实数。

(二)知识归纳:

1、板书:1.1平方根。

2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)。

3、怎么算?每块地砖的面积是:10.8120=0.09平方米。

由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。

4、练习:

由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。

5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)。

例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。

6、说一说:9,16,25,49的一个平方根是多少?

(三)探求新知:

1、4的平方根除了2以外,还有别的数吗?

2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。

3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)。

4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。

5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;把a的负平方根记作-。

6、0的平方根有且只有一个:0。0的平方根记作,即=0。

7、负数没有平方根。

8、求一个非负数的平方根,叫做开平方。

(四)巩固练习:

1、分别求下列各数的平方根:36,25/9,1.21。

(6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)。

2、分别求下列各数的算术平方根:100,16/25,0.49。(10,4/5,0.7)。

三、小结与提高:

1、面积是196平方厘米的正方形,它的边长是多少厘米?

2、求算术平方根:81,25/144,0.16。

级数学教案范例篇十四

使学会解比例的方法,进一步理解和掌握比例的基本性质。

联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

使学会解比例的方法,进一步理解和掌握比例的基本性质。

体现解比例在生产生活中的广泛应用。

教学预设个性修改。

目标导学,复习激趣,自主合作,汇报交流,变式训练。

1、什么叫做比例?

3、比例有几种表示形式?

1、出示埃菲尔铁挂图。

2、出示例题。

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)。

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)。

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)。

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)。

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)。

(9)、这样在组成比例的四个项中,我们知道其中的.几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)。

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)。

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)。

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)。

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)。

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3。

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)。

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

(5)、=。

总结这节课主要学习了什么内容?

作业布置教材43页5题。

板书设计解比例。

例3、解比例=。

解:2.4=1.5×6。

=()×()。

()。

级数学教案范例篇十五

:指数函数的图象和性质。

本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识.

本节课使用的教学方法有:直观教学法、启发引导法、发现法。

一、问题情境:

分析可知,函数的关系式分别是与。

1]定义:

一般地,函数叫做指数函数,其中.。

问题4:为什么规定?

问题5:你能举出指数函数的例子吗?

阅读材料(“放射性碳法”测定古物的年代):

在动植物体内均含有微量的放射性,动植物死亡后,停止了新陈代谢,不在产生,且原有的会自动衰变.经过5740年(的半衰期),它的残余量为原来的一半.经过科学测定,若的原始含量为1,则经过x年后的残留量为=.

这种方法经常用来推算古物的年代.

练习1:判断下列函数是否为指数函数.。

(1)(2)。

(3)(4)。

说明:指数函数的解析式y=中,的系数是1.

有些函数貌似指数函数,实际上却不是,如y=+k(a0且a1,kz);

问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

函数的定义域,值域,单调性,奇偶性等;

利用函数图象研究函数的性质。

问题7:作函数图象的一般步骤是什么?

列表,描点,作图。

探究活动1:用列表描点法作出,的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.

引导学生分析图象并总结此时指数函数的性质(底数大于1):

(1)定义域?r。

(2)值域?函数的值域为。

(3)过哪个定点?恒过点,即。

(4)单调性?时,为上的增函数。

(5)何时函数值大于1?小于1?当时,;当时,

(引导学生自己分析和反思,培养学生的反思能力和解决问题的能力).

根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.

问题9:到现在,你能自制一份表格,比较及两种不同情况下的图象和性质吗?

(学生完成表格的设计,教师适当引导)。

级数学教案范例篇十六

重点:邻补角与对顶角的概念、对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题。

二、认识邻补角和对顶角,探索对顶角性质。

1、学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用何语言准确表达;

有公共的顶点o,而且的.两边分别是两边的反向延长线。

2、学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。

3、学生根据观察和度量完成下表:

两条直线相交所形成的角分类位置关系数量关系。

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4、概括形成邻补角、对顶角概念和对顶角的性质。

三、初步应用。

练习:

下列说法对不对。

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

(2)邻补角是互补的两个角,互补的两个角是邻补角。

(3)对顶角相等,相等的两个角是对顶角。

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。

四、巩固运用例题:如图,直线a,b相交,,求的度数。

(教科书5页练习)已知,如图,求:的度数。

邻补角、对顶角。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服