作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
高中数学教案全套必修一篇一
一)、培养良好的学习兴趣。
1、课前预习,对所学知识产生疑问,产生好奇心。
2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
3、思考问题注意归纳,挖掘你学习的潜力。
5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
二)、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
三)、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
高中数学教案全套必修一篇二
对重点内容应重点复习.首先拟出主要内容,然后有目的有针对性地做相关内容的题目,着重收集主要题型和技巧解法,像小论文式地重组知识,不要盲目地做题,要有针对性地选题,回味练习.
高考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法、换元法、分离常数法等操作性较强的数学方法.同学们在复习时应对每一种方法的实质,它所适应的题型,包括解题步骤都熟练掌握.其次应重视对数学思想的理解及运用,如函数思想、数形结合思想.
应注意实际问题的解决和探索性试题的研究。
现在各地风行素质教育,呼吁改革考试命题.增强运用数学知识解决实际问题的试题,在其他省市的高考命题中已经体现,而且难度较大,这一部分尤其是探索性命题在平时学习中较少涉及,希望同学们把近几年其他省、市高考试题中有关此内容的题目集中研究一下,有备无患.这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力.
高中数学教案全套必修一篇三
各位老师大家好!
我说课的内容是人教版a版必修2第三章第一节直线的倾斜角与斜率第一课时。
(一)教材分析。
本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。
(二)学情分析。
本节课的教学对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上知道两点确定一条直线,知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需从学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、巩固和应用过程。
(三)教学目标。
1.理解直线的倾斜角和斜率的概念,理解直线的倾斜角的唯一性和斜率的存在性;。
2.掌握过两点的直线斜率的计算公式;。
3.通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;。
生严谨求简的数学精神。
重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点:直线的倾斜角与斜率的概念的形成,斜率公式的构建。
(四)教法和学法。
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用设置问题串的形式,启发引导学生类比、联想,产生知识迁移;通过几何画板演示实验、探索交流相结合的教学方法激发学生观察、实验,体验知识的形成过程;由此循序渐进,使学生很自然达到本节课的学习目标。
(五)教学过程。
环节1.指明研究方向(3min)。
简介17世纪法国数学家笛卡尔和费马的数学史。
高中数学教案全套必修一篇四
1.理解直线的方程的概念,会判断一个点是否在一条直线上.
2.培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.
【教学重点】。
直线的特征性质,直线的方程的概念.
【教学难点】。
直线的方程的概念.
【教学方法】。
这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.
【教学过程】。
环节。
教学内容。
师生互动。
设计意图。
引入。
1.用性质描述法表示大于0的偶数构成的集合,并判断-1和6在不在这个集合中.
2.作函数y=x+3的图象,并判断点(0,1)和(-2,1)在不在函数的图象上.
教师提出问题,学生解答.
教师点评.
复习本节相关内容.
新课。
1.函数与图象。
一次函数的图象是一条直线,如y=x+3的图象是直线ab,如图所示.
2.直线的特征性质。
例如,通过点(2,0)且垂直于x轴的直线l.
一般地,在平面直角坐标系中,给定一条直线,如果直线上点的坐标都满足某个方程,而且满足这个方程的坐标所表示的点都在直线上,那么这个方程叫做直线的方程.
例分别给出下列直线的方程:
(1)直线m平行于x轴,且通过点(-2,2);。
(2)y轴所在的直线.
练习。
(1)写出垂直于x轴且过点(5,-1)的直线方程.
(2)已知点(a,3)在方程为y=x+1的直线上,求a的值.
师:y=x+3是一个代数方程,而直线ab是一个几何图形,也就是说,代数方程可以用几何图形表示,几何图形也可以用代数方程来表示.
学生在教师引导下理解代数方程与几何图形的对应关系.
师:既然直线是点的集合,那么我们就可以利用集合的特征性质来解决这一问题.
师:如图,在直线l上的点的横坐标有什么特点?横坐标是2的点也一定在直线l上吗?
直线l的特征性质能用x=2来表述吗?
学生回答教师提出的问题.
师:对于平面直角坐标系中的任意一点,只要看它的坐标是否满足x=2,就能判断出点是否在直线l上.
点a(2,1)的坐标满足方程x=2吗?点a在直线l上吗?
点b(2.3,2)满足方程x=2吗?点b在直线l上吗?
教师强调要从两方面来说明某个方程是不是给定直线的方程.
师:由上面分析,通过点(2,0)且垂直于x轴的直线l的方程是什么?
学生回答.
教师引导学生解答.引导过程中进一步强调直线上的点的坐标都满足方程,而且满足这个方程的坐标所表示的点都在直线上.
学生小组合作完成练习,教师巡视了解学生掌握情况.
由特殊到一般,为引入直线的方程提供基础.
提出解决问题的方法.
引导学生分析直线l的坐标特点,为概念的引入打下基础.
通过具体的例子来说明判断某点是否在给定直线上的方法.
通过例题进一步加强学生对概念的理解.
小结。
1.直线的方程的概念.
师生共同回顾本节内容,进一步深化对概念的理解.
总结本节内容.
作业。
教材p73练习a组题.
教材p73练习b组题(选做).
学生标记作业.
针对学生实际,对课后书面作业实施分层设置.
语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术。
语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术。
高中数学教案全套必修一篇五
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1、函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
3、函数方程思想的几种重要形式。
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
高中数学教案全套必修一篇六
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
3.函数方程思想的几种重要形式。
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
高中数学教案全套必修一篇七
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点。
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标。
[知识与技能目标]。
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]。
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]。
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择。
引导发现法。
四、学法指导。
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
高中数学教案全套必修一篇八
1、教材(教学内容)。
2、设计理念。
3、教学目标。
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点。
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析。
6、教法分析。
7、学法分析。
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。