当前位置:网站首页 >> 作文 >> 2023年高中数学说课稿(模板11篇)

2023年高中数学说课稿(模板11篇)

格式:DOC 上传日期:2023-12-16 23:05:04
2023年高中数学说课稿(模板11篇)
时间:2023-12-16 23:05:04     小编:曼珠

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

高中数学说课稿篇一

导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。

2、教学的重点、难点、关键

教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。

教学难点:理解导数的几何意义的本质内涵

1) 从割线到切线的过程中采用的逼近方法;

2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.

根据新课程标准的要求、学生的认知水平,确定教学目标如下:

1、知识与技能 :

通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

过程与方法:

通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

3、情感态度与价值观:

对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了

自主 、合作、探究的学习方法。

教具: 几何画板、幻灯片

1.创设情境

学生活动——问题系列

问题1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?

问题2 如图直线l是曲线c的切线吗?

(1)与 (2)与 还有直线与双曲线的位置关系

问题3 那么对于一般的曲线,切线该如何定义呢?

【设计意图】:通过类比构建认知冲突。

学生活动——复习回顾

导数的定义

【设计意图】:从理论和知识基础两方面为本节课作铺垫。

2.探索求知

学生活动——试验探究

问一;求导数的步骤是怎样的?

第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。

【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。

问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。

【设计意图】:通过学生动手实践得到平均变化率表示割线pq的斜率。

问三;在的过程中,你能描述一下割线pq的变化情况吗?请在图像中画出来。

【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,q();从形的角度看, 的过程中,q点向p点无限趋近,割线pq趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。

探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。

【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。

问四;你能从上述过程中概括出函数在处的导数的几何意义吗?

【设计意图】:引导学生发现并说出:,割线pq切线pt,所以割线

pq的斜率切线pt的斜率。因此,=切线pt的斜率。

1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;

2、通过学生对方法的选择,对学生的学习能力评价;

3、通过练习、课后作业,对学生的学习效果评价.

5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.

高中数学说课稿篇二

奇偶性是人教a版第一章集合与函数概念的第3节函数的基本性质的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。

2、学情分析。

从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

3、教学目标。

基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

【知识与技能】。

1、能确定一些简单函数的奇偶性。

2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

【过程与方法】。

经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。

【情感、态度与价值观】。

经过自主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上到达了预期效果。

4、教学重点和难点。

重点:函数奇偶性的概念和几何意义。

几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

难点:奇偶性概念的数学化提炼过程。

由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。

1、教法。

根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。

2、学法。

让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。

具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。

(一)设疑导入、观图激趣。

由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。

用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

(二)指导观察、构成概念。

在这一环节中共设计了2个探究活动。

探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,()然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。

在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

(三)学生探索、领会定义。

探究3下列函数图象具有奇偶性吗?

设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)。

(四)知识应用,巩固提高。

在这一环节我设计了4道题。

例1确定下列函数的奇偶性。

选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。

例1设计意图是归纳出确定奇偶性的步骤:

(1)先求定义域,看是否关于原点对称;

(2)再确定f(-x)=-f(x)还是f(-x)=f(x)。

例2确定下列函数的奇偶性:

例3确定下列函数的奇偶性:

例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?

例4(1)确定函数的奇偶性。

(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

例4设计意图加强函数奇偶性的几何意义的应用。

在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。

(五)总结反馈。

在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。

(六)分层作业,学以致用。

必做题:课本第36页练习第1-2题。

选做题:课本第39页习题1、3a组第6题。

思考题:课本第39页习题1、3b组第3题。

设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。

高中数学说课稿篇三

各位老师:

大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教a版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:

1.教材所处的地位和作用

现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。

2.教学的重点和难点

重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。

1.知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。

2.能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。

3.情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。

采用"问题探究式"教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。

算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。

1.创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是"算法".

「设计意图」是为了充分挖掘章头图的教学价值,体现

1)算法概念的由来;

2)我们将要学习的算法与计算机有关;

3)展示中国古代数学的成就;

4)激发学生学习算法的兴趣。从而顺其自然的过渡到本节课要讨论的话题。(约4分钟)

2.引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,为建立算法的概念做好铺垫。

之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)

3.例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。

这两道例题均选自课本的例1和例2.

例1是让我们设定一个程序以判断一个数是否为质数。质数是我们之前已经学习的内容,为了能更顺利地完成解题过程,这里有必要引导学生们回顾一下质数应满足的条件,然后再根据这个来探索解题步骤。通过例1让学生认识到求解结构中存在"重复".为导出一般问题的算法创造条件,也为学习算法的自然语言表示提供前提。告诉学生们本算法就是用自然语言的形式描述的。并且设计算法一定要做到以下要求:

(1)写出的算法必须能解决一类问题,并且能够重复使用。

(2)要使算法尽量简单、步骤尽量少。

(3)要保证算法正确,且计算机能够执行。

在例1的基础上我们继续研究例2,例2是要求我们设计一个利用二分法来求解方程的近似根的程序。我们首先要对算法作分析,回顾用二分法求解方程近似根的过程,然后设计出解题步骤。二分法是算法中的经典问题,具有明显的顺序和可操作的特点。因此通过例2可以让学生进一步了解算法的逻辑结构,领会算法的思想,体会算法的的特征。同时也可以巩固用自然语言描述算法,提高用自然语言描述算法的表达水平。另外,借助例题加强学生对算法概念的理解,体会算法具有程序性、有限性、构造性、精确性、指向性的特点,算法以问题为载体,泛泛而谈没有意义。(约20分钟)

4.课堂小结:

(1)算法的概念和算法的基本特征

(2)算法的描述方法,算法可以用自然语言描述。

(3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)

5.布置作业:课本练习1、2题

课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

高中数学说课稿篇四

本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所a版教材)选修2-2中第§节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.

【知识与技能目标】。

(1)知道曲线的切线定义,理解导数的几何意义;。

——让学生感知和初步理解函数在处的导数的几何意义就是函数的图像在处的切线的斜率,即=切线的斜率.

(2)导数几何意义简单的应用.

——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.

【过程与方法目标】。

(1)回顾圆锥曲线的切线的概念,复习导数概念,寻找在处的瞬时变化率的几何意义;。

(3)通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;。

(5)通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.

【情感态度价值观目标】。

(3)增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.

重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.

难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.

关键:由割线趋向切线动态变化效果,由割线“逼近”成切线的理解.

高中数学说课稿篇五

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

教学环节。

教学内容和形式。

设计意图。

复习。

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

(略)。

操作-----交流-----归纳-----多媒体演示-----联系生活。

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的'观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节。

注:1、平面内。

2、若,则点p的轨迹为椭圆。

若,则点p的轨迹为线段。

若,则点p的轨迹不存在。

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)。

情境3.观看天体运行的轨道图片。

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

例:已知点、为椭圆的两个焦点,p为椭圆上的任意一点,且,其中,求椭圆的方程。

点拨-----板演-----点评。

(1)建系设点。

(2)写出点的集合。

(3)写出代数方程。

(4)化简方程:

1请一位基础较好,书写规范的同学板演。

(5)证明:讨论推导的等价性。

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用。

举例。

教学环节。

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评。

活动过程:思考-----解答-----点评。

变式1已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

求椭圆的标准方程。

思考-----解答-----点评。

认清椭圆两种标准方程形式上的特征。

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

8.1椭圆及其标准方程。

本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。

高中数学说课稿篇六

开始:各位专家领导,好!

今天我将要为大家讲的课题是。

首先,我对本节教材进行一些分析。

一、教材结构与内容简析。

本节内容在全书及章节的地位:《》是高中数学新教材第册()第章第节。在此之前,学生已学习了,这为过渡到本节的学习起着铺垫作用。本节内容是部分,因此,在中,占据的地位。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

二、教学目标。

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1基础知识目标:

2能力训练目标:

3创新素质目标:

4个性品质目标:

三、教学重点、难点、关键。

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。

重点:通过突出重点。

难点:通过突破难点。

关键:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法。

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生。

“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:,应着重采用的教学方法。即:

五、学法。

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:

2、实践:

3、能力:

最后我来具体谈一谈这一堂课的教学过程:

六、教学程序及设想。

1、由引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:

2、由实例得出本课新的知识点是:

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习。

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

注意时间掌握。

六、注意灵活导入新知识点。

电脑课件。

使用投影。

根据时间进行增删。

高中数学说课稿篇七

《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

(一)教材的地位和作用。

有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

(二)教学目标。

1、联系生活情境了解扇形统计图的特点和作用。

2、能读懂扇形统计图,从中获取有效的信息。

3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

(三)教学重点:

1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

2、认识折线统计图,了解折线统计图的特点。

(四)教学难点:

1、能从扇形统计图中获得有用信息,并做出合理推断。

2、能根据统计图和数据进行数据变化趋势的分析。

本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

(一)复习引新。

1、复习旧知。

提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

2、引入新课。

(二)自主探索,学习新知。

新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

三、课堂总结。

四、布置作业。

五、板书设计:

高中数学说课稿篇八

导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探。

索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

(2)教学难点:椭圆标准方程的建立和推导。

1、动画演示,描绘出椭圆轨迹图形。

2、实验演示。

思考:椭圆是满足什么条件的点的轨迹呢?

1、动手实验:学生分组动手画出椭圆。

实验探究:

保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

2、概括椭圆定义。

引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为的椭圆上任一点m,有什么性质?

令椭圆上任一点m,则有。

1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

2、研讨探究。

问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点m,有。

尝试推导椭圆的方程。

思考:如何建立坐标系,使求出的方程更为简单?

将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

方案一方案二。

按方案一建立坐标系,师生研讨探究得到椭圆标准方程。

=1(),其中b2=a2-c2(b0);

选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b0)。

教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

1、观察椭圆图形及其标准方程,师生共同总结归纳。

(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

(3)椭圆标准方程中三个参数a,b,c关系:;

(4)椭圆焦点的位置由标准方程中分母的大小确定;

(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

2、在归纳总结的基础上,填下表。

标准方程。

图形a,b,c关系焦点坐标焦点位置。

在x轴上。

在y轴上。

例1、求适合下列条件的椭圆的标准方程。

(1)两个焦点的坐标分别是,椭圆上一点p到两焦点距离和等于10。

(2)两焦点坐标分别是,并且椭圆经过点。

例2、(1)若椭圆标准方程为及焦点坐标。

(2)若椭圆经过两点求椭圆标准方程。

(3)若椭圆的一个焦点是,则k的值为。

(a)(b)8(c)(d)32。

例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点p向x轴作垂线段,求线段中点m的轨迹。

1、写出适合下列条件的椭圆标准方程。

(1),焦点在x轴上;

(2)焦点在x轴上,焦距等于4,并且经过点p;

2、若方程表示焦点在y轴上的椭圆,则k的范围。

3、已知b,c是两个定点,周长为16,求顶点a的轨迹方程。

4、已知椭圆的焦距相等,求实数m的值。

5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

6、已知p是椭圆上一点,其中为其焦点且,求三解形面积。

师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

课本第96页习题§8。1第3题、第5题、第6题。

课后思考题:

1、知是椭圆的两个焦点,ab是过的弦,则周长是。

(a)2a(b)4a(c)8a(d)2a2b。

2、的两个顶点a,b的坐标分别是边ac,bc所在直线的斜。

率之积等于,求顶点c的轨迹方程。

2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

将本文的word文档下载到电脑,方便收藏和打印。

高中数学说课稿篇九

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能。

会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

(二)过程与方法。

经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

(三)情感态度价值观。

经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点。

由正弦函数的图象得到正弦函数的性质。

正弦函数的周期性和单调性。

此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

(一)新课导入。

首先是导入环节,在这一环节中我将采用复习的导入方法。

我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

(二)新知探索。

接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

学生一边看投影,一边思考如下问题:

(1)正弦函数的定义域是什么。

(2)正弦函数的值域是什么。

(3)正弦函数的最值情景如何。

(4)正弦函数的周期。

(5)正弦函数的奇偶性。

(6)正弦函数的递增区间。

给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

1.定义域:y=sinx定义域为r。

2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]。

3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。

4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

(三)课堂练习。

第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。

(四)小结作业。

最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

高中数学说课稿篇十

2、教材所处地位、作用。

3、教学目标。

(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性。

的方法;

4、重点与难点。

教学重点(1)函数单调性的概念;

(2)运用函数单调性的定义判断一些函数的单调性.。

教学难点(1)函数单调性的知识形成;

(2)利用函数图象、单调性的定义判断和证明函数的单调性.。

二、教法分析与学法指导。

本节课是一节较为抽象的数学概念课,因此,教法上要注意:

4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.。

在学法上:

教学。

环节。

设计意图。

问题。

情境。

(播放中央电视台天气预报的音乐)。

满足在定义域上的单调性的讨论.。

3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.。

4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。

高中数学说课稿篇十一

抛物线焦点性质的探索(说课)

一、

1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。

2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:

(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。

(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。

3 教学内容、重点、难点及关键 本节安排两节课,

第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;

第二节课:证明第一节所得到的有关性质。

重点:

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

难点;

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。

学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。

4.1 使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型 问题1 回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。 由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服