作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
认识二元一次方程组教案篇一
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
内容:
1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
内容:
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
探究方程与函数的相互转化。
内容:
例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是.
内容:
1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为.
(a)4(b)5(c)6(d)7。
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;。
(2)两条直线的交点坐标是对应的方程组的解;。
(1)代入消元法;。
(2)加减消元法;。
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
认识二元一次方程组教案篇二
学生的知识技能基础:七年级时,学生已经学习了一元一次方程及其应用。本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。
学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的'合作学习经验,具备了一定的合作与交流的能力。
地位和作用:本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型。
3.在解决问题过程中,学会借助图表分析问题,感受化归思想。
4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的意志和勇气。
本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。
教学准备。
flah播放器;若flash不能播放,请按绝对路径重新插入后播放。
本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。
1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.
2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.
3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.
4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:
1000a+b.
设计意图:通过复习,为本节课的继续学习做好铺垫。
实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题。
动画,情景展示。
12:00是一个两位数,它的两个数字之和为7;。
13:00十位与个位数字与12:00所看到的正好颠倒了;
14:00比12:00时看到的两位数中间多了个0.
小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数。小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
那么,你能回答以下问题吗?
(1)他们取出的两张卡片上的数字分别是几?
(2)第一次,他们拼出的两位数是多少?
(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
认识二元一次方程组教案篇三
1、发现的问题:在学习《二元一次方程组》时,学生对本节课的内容和前面学习的一元一次方程有点类似,学生学习起来感到枯燥无味。课堂气愤涣散,效率不高。
2、解决问题的过程:在学习二元一次方程组时,可以用中国古代著名数学问题“鸡兔同笼”或“百鸡百钱”问题作为引入。学生被这种有趣的问题吸引,积极思考问题的答案,以“趣”引思,使学生处于兴奋状态和积极思维状态,不但能诱发学生主动学习,而且还能增长知识,了解了我国古代的`数学发展,培养学生的爱国主义精神。
3、教学反思:一堂成功的数学课,往往给人以自然、和谐、舒服的享受,在数学教学中,我们要紧密联系学生的生活实际,在现实世界中寻找数学题材,让教学贴近生活,让学生在生活中看到数学,摸到数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。让学生接触与生活有关的数学问题,势必会激发学生的学习兴趣,从而有效的提高课堂教学效率,使学生真正喜欢数学、学好数学、用好数学。
认识二元一次方程组教案篇四
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值。
借助列表分问题中所蕴含的数量关系。
用列表的方式分析题目中的各个量的关系。
(师生活动)设计理念。
创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案。
学生独立思考,容易解答,以一道生活热点问题引入,具有现实意义,激发学生学习兴趣,同时培养学生节约、合理用电的意识。
理解题意是关健,通过该题,旨在培养学生的读题能力和收集信息能力。
(图见教材115页,图8.3-2)。
学生自主探索、合作交流。
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关,因此设产品重x吨,原料重y吨。
设问2.如何确定题中数量关系?
列表分析。
产品x吨。
原料y吨。
合计。
公路运费(元)。
铁路运费(元)。
价值(元)。
由上表可列方程组。
解这个方程组,得。
因为毛利润-销售款-原料费-运输费。
所以这批产品的销售款比原料费与运输的和多1887800元。
引导学生讨论以上列方程组解决实际问题的。
学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情。
通过讨论让学生认识到合理设定未知数的愈义。
借助表格辅助分析题中较复杂的数量关系,不失为一种好方法。
课堂练习。
购到这种水果140吨,准备加工后上市销售,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:
方案一:将这批水果全部进行粗加工;
方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;
方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?
学生合作讨论完成。
选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用。
小结与作业。
小结提高。
2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程。
学生思考、讨论、整理。
这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系。
让学生结合自己的解题过。
程概括整理,帮助理解,培养模。
型化的思想和应用数学于现实。
生活的意识。
布置作业16、必做题:教科书116页习题8.3第2、6题。
17、选做题:教科书117页习题8.3第9题。
18、备19、选题:
(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车,已知过去两次租用这两种货车的记录如下表所示。
甲种货车(辆)乙种货车(辆)总量(吨)。
第1次。
4528.5。
第2次。
3627。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习,学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解,在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想。
同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识。
认识二元一次方程组教案篇五
1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3、引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点。
2、彻底理解题意。
教学难点。
教学过程。
一、情境引入。
二、建立模型。
1、怎样设未知数?
2、找本题等量关系?从哪句话中找到的?
3、列方程组。
4、解方程组。
5、检验写答案。
三、练习。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2、p38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
p42习题2.3a组第1题。
后记:
文档为doc格式。
认识二元一次方程组教案篇六
含有两个未知数,并且所含未知数的项的次数都是1的.整式方程叫做二元一次方程。
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
(1)代入(消元)法(2)加减(消元)法。
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
初中数学平行线知识点。
平行线及其判定。
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质。
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
1要重视计算。
做数学题就是要注重计算,很多孩子成绩丢分在计算上,解题步骤没有错,但是计算的过程中出现失误,导致丢分,影响整体成绩,所以要重视计算的作用,初一阶段刚开学就会学到有理数,绝对值,倒数,相反数,一元一次方程,单项式和多项式等基本的计算问题,每一个知识点都脱离不了计算的考察。整式,方程,不等式等后续重要知识点都基于有理数的计算。后续的分式计算更凸显了孩子的计算问题。所以要想提高数学成绩,一定要重视计算。
2细节决定成败。
我们在考试以后会发现有很多不应该做错的题,因为大意失了分数,所以要想提高数学成绩,一定要注意细节,在考试的过程中不该丢的不能丢,分分计较,做到颗粒归仓。解题时即使思路正确,不注意细节也能丢分。考试分分比较,每一分都代表了一个人的素质和水平。这就是细节决定成败。
3善于发现数学规律。
要想提高数学成绩,在做数学题的过程中要善于发现规律。不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,就比如语文一样的话,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个,不过你可以用其他的方法进行解答,所以善于发现数学的解题规律,转变思路也是提高数学成绩的一条有效途径。
4高水平复习很重要。
要想提高数学成绩,在考试前一定要有高水平高效率的复习。一道题,刚开始你不熟悉,那么,你需要做十遍甚至更多遍,把整个题目做到滚瓜烂熟。这个时候,如果你还在不断地重复做这道题,那么就是低水平重复,高手们会当这道题熟悉了,他就开始放弃了,把大把时间拿来,去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。他们也在重复,但是,是高水平重复。
认识二元一次方程组教案篇七
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型2017年-2017学年七年级数学下册全册教案(人教版)2017年-2017学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
p42。习题2.3a组第1题。
后记:
认识二元一次方程组教案篇八
一、填空题(每题4分,共20分)。
2.若与是同类项,则。
3.已知则。
4.已知则.
5.若则.
二、解下列方程组(每题8分,共32分)。
三、解答题(每题8分,共24分)。
10.满足方程组的x,y的值的和等于2,求m的值.
11.甲、乙二人同解方程组,甲正确解得,乙因抄错了c,解得,求a、b、c的`值.
12.已知关于x、y的方程组和的解相同,求的值.
四、列方程组解应用题(每题8分,共24分)。
13.据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
时间换表前换表后。
峰时(8:00~21:00)谷时(21:00~次日8:00)。
电价0.52元/千瓦时x元/千瓦时y元/千瓦时。
已知每千瓦时的峰时价比谷时价高0.25元.小卫家对换表后最初使用的100千瓦时的用电情况进行统计分析得知:峰时用电量占80%,谷时用电量占20%,与换表前相比,电费共下降2元.请你求出表格中的x和y的值.
15.牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元;制成奶片销售,每吨可获利润元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜奶;。
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为选择哪种方案获利最多,为什么?
答案:
1.(不惟一)2.2,-1。3.-1.4.1∶2∶3.5.14.
6.7.8.9.10.m=4.
11.12.1.13.0.55,0.30.14.24台,16台.
15.方案一:4天生产奶片4吨,其余直接销售1×4×2000+(9-4)×500=10500(元);方案二:设x天生产奶片y天生产酸奶.从而(元).所以选择方案二获利最多.
认识二元一次方程组教案篇九
(三)德育渗透点。
消元,化未知为已知的数学思想.。
(四)美育渗透点。
通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.。
二、学法引导。
1.教学方法:引导发现法、练习法,尝试指导法.。
三、重点、难点、疑点及解决办法。
(-)重点。
认识二元一次方程组教案篇十
知识与技能。
过程与方法。
能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组。
情感、态度与价值观。
培养学生分析问题,解决问题的能力,体验学习数学的快乐。
重点:
难点:
选择合适的方法解方程组;并能把相应问题转化为解方程组。
教学手段。
多媒体,小组评比。
教学过程。
一、知识梳理。
设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础。
二、基础训练。
教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。
设计意图:
基础知识达标训练。
教学手段与方法:
毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。
认识二元一次方程组教案篇十一
知识与技能。
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:
1、方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:
1、解方程组。
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:
1、已知一次函数与的图像的交点为,则。
2、已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。
(a)4(b)5(c)6(d)7。
3、求两条直线与和轴所围成的三角形面积。
4、如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的'关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置。
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
认识二元一次方程组教案篇十二
相对前面两课内容来说,这一课的内容较为容易理解,再加上有前面两课的基础,学生应该好学习些。因此,这一课我在以下两个方面要求学生做好,图形解方程组的画图规范,利用图形进一步理解前一课的内容:“当x为何值时,y1<y2,y1=y2,y1>y2的题目类型”。
在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。
利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。
要动员学生议论或争论起来,这才是最有效的手段,个别辅导时,有同学在我的办公桌前进行争执,我看到了学生因相互的讨论而掌握,学生自己能够真正动起来,这是最好的,我希望学生是学习的主人,课堂上要努力让他们成为课堂的主人。
认识二元一次方程组教案篇十三
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程。
(一)引入新课。
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课。
填空:二元一次方程可以转化为________。
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式。
解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。
解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题。
(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。
(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。
5、旅游问题。
古城荆州历史悠久,文化灿烂。
认识二元一次方程组教案篇十四
一、精心选一选!一定能选对!(每小题3分,共30分)。
(a)(b)(c)(d)。
2.方程组解的个数有().
(a)一个(b)2个(c)3个(d)4个。
3.若方程组的解是,那么、的值是().
(a)(b)(c)(d)。
4.若、满足,则的值等于().
(a)-1(b)1(c)-2(d)2。
(a)(b)(c)(d)。
6.下列说法中正确的是().
(b)方程的解、为自然数的有无数对。
7.在等式中,当时,,当时,,则这个等式是().
(a)(b)(c)(d)。
(a)(b)(c)(d)。
9.(20宁夏)买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的`桶数是甲种水的桶数的75%,设买甲种水x桶,乙种水y桶,则所列方程组中正确的是()。
(a)(b)(c)(d)。
10.(年福建福州)如图,射线oc的端点o在直线ab上,1的度数比2的度数的2倍多10,则可列正确的方程组为().
(a)(b)(c)(d)。
二、耐心填一填!一定能填对!(每小题3分,共30分)。
11.已知方程,用含的式子表示的式子是____,用含的式子表示的式子是___________.
12.已知是方程的一个解,那么__________.
13.已知,,则________.
14.若同时满足方程和方程,则_________.
16.(2005年江苏盐城)若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个)。
17.已知方程组与的解相同,那么_______.
18.若,都是方程的解,则______,________.
19.(山东潍坊)蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是________________.
20.(2005年南宁)根据下图提供的信息,求出每支网球拍的单价为。
元,每支乒乓球拍的单价为元.
200元160元。
三、用心想一想!一定能做对!(共60分)。
21.(本小题8分)(2005年江苏苏州)解方程组:
26.(本小题12分)(,黄冈)已知某电脑公司有a型、b型、c型三种型号的电脑,其价格分别为a型每台6000元,b型每台4000元,c型每台2500元.我市东坡中学计划将100500元钱全部用于从该公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.
参考答案:
一、1~10daaacdbcbb。
二、11.,;12.0;13.-42;14.4;15.加减消元,;16.等;17.1.5;18.2,1;19.6.1万元,6.9万元;20.80,20.
三、
21.;22.;23.;24.54人挖土,18人运土;。
25.解:设这种矿泉水在甲、乙两处每桶的价格分别为元,根据题意,得。
解这个方程组,得。
因为.
所以到甲供水点购买便宜一些.
26.解:设从该电脑公司购进a型电脑x台,购进b型电脑y台,购进c型电脑z台.则可分以下三种情况考虑:
(1)只购进a型电脑和b型电脑,依题意可列方程组解得不合题意,应该舍去;。
(2)只购进a型电脑和c型电脑,依题意可列方程组解得。
(3)只购进b型电脑和c型电脑,依题意可列方程组。
解得。
认识二元一次方程组教案篇十五
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明。
对于认知主体――学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程。
(一)感知身边数学。
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
教学引入。
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示。
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质―边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]。
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课。
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质。
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]。
动画演示:
场景三:矩形的性质。
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]。
动画演示:
场景四:菱形的性质。
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]。
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
(二)享受探究乐趣。
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车。
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦。
1、抢答题。
2、旅游问题。
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获。
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地。
1、数学日记。
2、布置作业。
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。
四、教学设计反思。
1、贯穿一个原则――以学生为主体的原则。
2、突出一个思想――数形结合的思想。
3、体现一个价值――数学建模的价值。
4、渗透一个意识――应用数学的意识。
认识二元一次方程组教案篇十六
学习目标:
学习重点:
学习难点:
1.做图像时要标准、精确,近似值才接近。
学习方法:
先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。
自主学习部分:
问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。
(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?
(5)由以上的探究过程,你发现了什么?
(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。
合作探究:
(1)用做图像的方法解方程组。
(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点。