作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
七年级数学教案湘教版篇一
本环节主要是创设情境,在实际问题中引出本节课题.
【设计意图】。
引导学生发现:可以借助游戏创设情境,导入新课.
(二)探究新知。
1、利用丹凤地图的实际情境探索点的平移与坐标变化的规律.
2、如图,已知a(c2,c3),根据下列条件,在相应的坐标系中分别画出平移后的点,写出它们的坐标,并观察平移前后点的坐标变化.
(1)将点a向右平移5个单位长度,得到点a1;
(2)将点a向左平移2个单位长度,得到点a2;
(3)将点a向上平移6个单位长度,得到点a3;
(4)将点a向下平移4个单位长度,得到点a4;
教学过程中注重让学生明确:将哪个点沿着什么方向,平移几个单位后,得到的是哪个点.
3、在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变。
点的上下平移点的横坐标不变,纵坐标变化。
4、点的平移的应用.(见课件)。
5、比一比看谁反应快。
(1)点a(c4,2)先向右平移3个单位长度后得到点b,求点b的坐标.
(2)点a(c4,2)先向左平移2个单位长度后得到点b,求点b的坐标.
(3)点a(c4,2)先向下平移4个单位长度后得到点b,求点b的坐标.
(4)点a(c4,2)先向上平移3个单位长度后得到点b,求点b的坐标.
6、逆向思维:由点的变化探索点的方向和距离。
(1)如果a,b的坐标分别为a(-4,5),b(-4,2),将点a向___平移___个单位长度得到点b;将点b向___平移___个单位长度得到点a。
(2)如果p、q的坐标分别为p(-3,-5),q(2,-5),将点p向___平移___个单位长度得到点q;将点q向___平移___个单位长度得到点p。
(3)点a′(6,3)是由点a(-2,3)经过__________________得到的.点b(4,3)向______________得到b′(4,5)。
7、应用平移解决简单问题在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。
七年级数学教案湘教版篇二
1知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点。
1教学重点:
掌握用整十数除的口算方法。
2教学难点:
理解用整十数除的口算算理。
教学工具。
多媒体设备。
教学过程。
1复习引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教学例1。
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式80÷20。
(3)学生独立探索口算的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
a.因为20×4=80,所以80÷20=4这是想乘算除。
b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。
为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误。
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。
(6)用刚学会的方法再次口算,并与同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于4,所以83除以20约等于4。
19接近于20,80除以20等于4,所以80除以19约等于4。
2.教学例2。
(1)创设情境引出问题。
师:谁会解决这个问题?
150÷50。
(2)小组讨论口算方法。
(3)你是怎么这样快就算出的呢?
a.因为15÷5=3,所以150÷50=3。
b.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30240÷80300÷50540÷90。
3.估算。
(1)探计估算的方法。
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?
3巩固提升。
1.独立口算。
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3.解决问题。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40=6(包)。
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30=4(个)。
答:看完这本书大约需要4个月。
课后小结。
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书。
口算除法。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=。
文档为doc格式。
七年级数学教案湘教版篇三
掌握多种数学解题方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成“以我为主”的学习模式。
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
七年级数学教案湘教版篇四
1、大于0的数叫做正数(positivenumber)。
2、在正数前面加上负号“-”的数叫做负数(negativenumber)。
3、整数和分数统称为有理数(rationalnumber)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则。
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则。
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则。
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则。
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)。
22、根据有理数的乘法法则可以得出。
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;。
(2)同级运算,从左到右进行;。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)。
短时间提高数学成绩的方法。
1、查查在知识方面还能做那些努力。关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。
2、一定要对自己、对未来充满信心,心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道初中数学题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。
3、看完书后,把课本放起来,做习题,通过做习题来再一次检查自己哪些地方做的不够好,如果碰到不会的地方,可以再看课本,这样以来,相信会给你留下深刻的印象。
数学学习方法。
1、基础很重要。
是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。
李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。
2、错题本很重要。
在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。
3、做题要多反思。
数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。
4、把数学知识形成体系。
数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。
七年级数学教案湘教版篇五
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法。
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
七年级数学教案湘教版篇六
教学目标:
1、使学生从数学的角度认识放大与缩小现象。
2、知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
3、能在方格纸上按一定的比将简单图形放大或缩小。
教学重点:
使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变。
教学难点:
体会图形相似变化的特点。
教学过程:
一、导入。
1、上两节课我们学习了比例尺,知道比例尺表示的是图上距离和实际距离的比,是按一定的比把实际距离进行放大或缩小。请同学们观察教科书p55的图。
2、说说图中反映的的是什么现象?哪些是将土体放大了?哪些是将物体缩小了?生活中还存在许多放大与缩小的现象,这节课我们就来研究“图形的放大与缩小”。
二、新授。
1、教学例4。
(1)。
出示例4,让学生说说题中要求的按“2∶1”放大图形什么意思?(按2∶1放大图形也就是图形的各边放大到原来的2倍)。
(2)学生尝试着画出正方形和长方形放大后的图形。
(3)。
画直角三角形时,引导学生思考:直角三角形的斜边不能看出是多少格,怎么办?(只要把两直角边放大到原来的2倍,再连成封闭图形就可以了)画完后通过量一量的方式,发现放大后的斜边的长度也是原来的2倍。
(4)。
观察对比原图形和放大后的图形,说说有什么变化?(一个图形按2∶1的比放大后,图形各边的长度放大到原来的2倍,但图形的形状没变)。
2、例4的延伸。
(1)如果把放大后的这组图形的各边再按1∶3缩小,图形又会发生什么变化?学生讨论后的出:a、图形缩小了,但形状不变。
b、缩小后的图形各条边分别缩小到原来长度的。
(2)学生独立画出缩小后的图形,指名投影展示。
3、归纳小结:图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。
4、学生独立完成书p57的“做一做”,交流是怎样思考与操作的,并及时纠正错误。
三、巩固练习。
1、教科书p60练习九第1题,找出图形a放大后的图形。
2、教科书p60练习九第2题。
四、总结。
图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。
七年级数学教案湘教版篇七
几何图形大小:长度、面积、体积等。
位置:相交、垂直、平行等。
2几何体也简称体。包围着体的是面。
3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。
4平面图形:在一个平面内的图形就是平面图形。
5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;。
6点线面体:是组成几何图形的基本元素。
7直线、射线、线段。
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
经过两点有一条直线,并且只有一条直线。两点确定一条直线。
8角。
9角的比较与运算。
角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
性质:等角(同角)的补角相等。等角(同角)的余角相等。
七年级数学教案湘教版篇八
1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。
2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。
3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。
教学重难点。
教学重点:用竖式计算小数加减法。
教学难点:理解小数点对齐的算理。
教学工具。
多媒体课件。
教学过程。
(一)情景引入。
师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。
(呈现多媒体,学生自主完成习题并总结计算算理)。
师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。
(二)例题讲解。
(1)小丽买了下面两本书,一共花了多少钱?
(2)《数学家的故事》比《童话选》贵多少钱?
生:好的。
(展示小丽遇到的问题(1),并让学生列出算式)。
师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?
(让学生大胆的去尝试,小组讨论,并列出竖式)。
师:你们发现小数加减法计算时需要注意什么?
生1:注意数位对齐。
生2:注意小数点要对齐。
生3:……。
老师小结:小数点要对齐,得数的小数点也要对齐。
师:小丽啊还有一个问题让我们看一看(展示问题(2))。
(让学生自主解决,并再回忆需要注意什么?)。
完成后学生给予总结,完成小数加减法的时候需要注意什么?
(三)习题巩固。
课本72页做一做。
课后小结。
学生谈一谈本节课你学到了什么?
给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
课后习题。
一、计算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、竖式计算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解决问题。
1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?
板书。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
七年级数学教案湘教版篇九
2.会用上的点表示有理数,会利用比较有理数的大小;。
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议。
一、重点、难点分析。
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.
二、知识结构。
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义。
三要素。
应用。
数形结合。
规定了原点、正方向、单位长度的直线叫。
原点。
正方向。
单位长度。
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数。
比较有理数大小,上右边的数总比左边的数要大。
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点。
1.的概念。
(1)规定了原点、正方向和单位长度的直线叫做.
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.
以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.
2.的画法。
(1)画直线(一般画成水平的)、定原点,标出原点“o”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小。
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。
五、定义的理解。
1.规定了原点、正方向和单位长度的直线叫做,如图1所示.
2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).
a点表示-4;b点表示-1.5;。
o点表示0;c点表示3.5;。
d点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数.
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。
同理,,表示是负数;反之是负数也可以表示为。
3.正常见几种错误。
1)没有方向。
2)没有原点。
3)单位长度不统一。
七年级数学教案湘教版篇十
1、生物圈中的绿色植物类群有:藻类植物、苔藓植物、蕨类植物、种子植物,其中前三种植物生长到一定的时期会产生一种叫做孢子的生殖细胞。因为通过孢子进行繁殖,所以又称为孢子植物(没有种子植物)。
2、藻类植物大多数生活在水中(如淡水:水绵,衣藻海水:紫菜、海带)。
(1)形态结构:没有根、茎、叶的分化。
(2)营养方式:藻类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子进行繁殖。
3、藻类植物在生物圈中作用:
(1)生物圈中氧气的重要来源。
(2)水生生物的食物来源。(如鱼类饵料)。
(3)供食用。(如海带紫菜)。
(4)药用。
4、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。
(1)形态结构:一般都很矮小,通常具有类似茎和叶的分化,但是茎中没有导管,叶中也没有叶脉,根非常简单,称为假根(只起固定植物体作用)。
(2)营养方式:苔藓植物细胞里都含有叶绿素,能进行光合作用。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。苔藓植物是监测空气污染程度的指示植物。
5、蕨类植物多数生活在阴湿的环境中(如里白、贯众、满江红)。
(1)形态结构:有根、茎、叶的分化,在这些器官中有专门运输物质的通道——输导组织。
(2)营养方式:蕨类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。
蕨类植物与人类的关系及其在生物圈中的作用:
(1)可供食用,如蕨菜。
(2)可供药用,如卷柏、贯众等。
(3)作为绿肥和饲料,如满江红。
(4)煤的来源。
6、种子植物的分类:根据子叶数目分为:
(1)双子叶植物:胚里具有两片子叶的植物(叶脉网状),营养都储存在子叶中。如蚕豆、大豆、花生。
(2)单子叶植物:胚里具有一片子叶的植物(叶脉弧形),营养大部分储存在胚乳中。如水稻、小麦、高粱。
7、种子的结构:
(1)种皮:保护作用。
(2)胚(包含胚芽、胚轴、胚根、子叶)是新植物的幼体,将来能发育成一个植物体。
(3)只有单子叶植物有胚乳。子叶、胚乳中储藏的营养物质是胚发育成幼苗时养料的来源。
8、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。
10、被子植物成为地球上分布最广泛的植物原因:被子植物一般都具有非常发达的输导组织,从而保证了体内水分和营养物质高效率地运输;它们一般都能开花和结果,所结的果实能够保护里面的种子,不少果实还能帮助种子传播。
生物实验题解题技巧。
深刻领会生物教材实验的设计思想。做好探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则。
掌握生物实验方法和实验步骤,深入分析实验条件、过程、现象或结果的科学性、正确性、严谨性和可变性,能够描述教材中经典实验的原理、目的、方法步骤、现象与结果预测及结论,为实验设计提供科学的实验依据,搭建基本框架。
生物的学习方法和技巧。
掌握基本知识要点。
与学习其它理科一样,生物学的知识也要在理解的基础上进行记忆,但是初中阶段的生物学还有着与其它学科不一样的特点:面对生物学,同学们要思考的对象是陌生的细胞、组织、各种有机物、无机物以及他们之间奇特的逻辑关系。
因此只有在记住了这些名词、术语之后才有可能理解生物学的逻辑规律,既所谓“先记忆,后理解”。在记住了基本的名词、术语和概念之后,把主要精力放在学习生物学规律上。这时要着重理解生物体各种结构、群体之间的联系(因为生物个体或群体都是内部相互联系,相互统一的整体),也就是注意知识体系中纵向和横向两个方面的线索。
用生物学的基本观点统领生物学的学习。
树立正确的生物学观点,可以更迅速更准确地学习生物学知识。所以在生物学学习中,要注意树立以下生物学观点:
1.生命物质性观点生物体由物质组成,一切生命活动都有其物质基础。
2.结构与功能相统一的观点包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。
3.生物的整体性观点系统论有一个重要的思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水平、组织水平、器官水平,还是个体水平,甚至包括种群水平和群落水平,都体现出整体性的特点。
4.生命活动对立统一的观点生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。
5.生物进化的观点生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。
6.生态学观点基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。
系统化和具体化的方法。
系统化就是把各种有关知识纳入一定顺序或体系的思维方法。系统化不单纯是知识的分门别类,而且是把知识加以系统整理,使其构成一个比较完整的体系。在生物学学习过程中,经常采用编写提纲、列出表解、绘制图表等方式,把学过的知识加以系统地整理。
具体化是把理论知识用于具体、个别场合的思维方法。在生物学学习中,适用具体化的方式有两种:一是用所学知识应用于生活和生产实践,分析和解释一些生命现象;二是用一些生活中的具体事例来说明生物学理论知识。
七年级数学教案湘教版篇十一
重点:邻补角与对顶角的概念.对顶角性质与应用。
难点:理解对顶角相等的性质的探索。
一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题。
二.认识邻补角和对顶角,探索对顶角性质。
1.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。
几何语言准确表达;。
有公共的顶点o,而且的两边分别是两边的反向延长线。
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系。
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质。
三.初步应用。
练习:
下列说法对不对。
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。
(2)邻补角是互补的两个角,互补的两个角是邻补角。
(3)对顶角相等,相等的两个角是对顶角。
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。
四.巩固运用例题:如图,直线a,b相交,求的度数。